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f Abstract

The paper presenis the Simple Kalman
filter (SKF) that has been designed for the
control of digital adaptive antenna arrays.
The SKF has been applied to the pilot signal
system and the steering vector one. The
above systems based on the SKI are
compared with adaptive antenna arrays
controlled by the classical LMS and the
Variable Step Size (VSS) LMS algorithms
and by the pure Kalman filter.

It is shown that the pure Kalman filter is
the most convenient for the control of the
adaptive arrays because it does not require
any a priori information about noise
statistics and excels in high rate of
convergence and low  misadjustment.
Extremely high computational requirements
are drawback of this filter. Hence, if low
computational power of signal processors is
at the disposal, the SKF is recommended to
be used.

Computational requirements of the SKF
are of the same order as the classical LMS
algorithm exhibits. On the other hand, all
the important features of the pure Kalman
Jilter are inherited by the SKF.

The paper shows that presented Kalman
Jilters can be regarded as special gradient
algorithms. That is why they can be
compared with the LMY family.
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1. Imtroduction

An adaptive antenna array is an antenna system that
automatically sets minims of its directivity pattern to
directions from that the most powerful interferences come.
Hence, the signal to interferences ratio (SIR) at the
antenna system output can be significantly increased. This
feature of adaptive arrays causes that such antennas are an
important part of many radars, satellite radio
communication receivers, military radio communication
systems etc.

Properties of adaptive antennas are namely influenced
by the quality of the antenna system, by the electronic
control circuitry and by the control algorithm.

Whereas the design methods of antenna arrays and
electronic control circuitry of adaptive antennas are in
detail worked out at the present time, the area of the
adaptive control is in the state of the very intensive
development. This situation is caused by the disproportion
between the computational requirements of the "nearly
perfect” control algorithms and the computational power of
the today signal processors.

Investigation of control algorithms has been so far
oriented towards improving properties of the classical LMS
algorithm [1], [2] in the most cases. In this work, a quite
different approach has been elected, Instead of perfecting
the LMS algorithm, the Kalman filter has been simplified.
The Simplified Kalman filter's (SKF) computational
requirements are of the same order as the LMS one. On the
other hand, the SKF preserves most of the positive features
of the pure Kalman filter. Hence, the SKF algorithm is
suitable for the digital controcl of adaptive antennas
especiatly.

Section II of the presented paper reminds the reader of
the principles of adaptive antennas based on the pilot
signal and the steering vector methods. Section III is
devoted to gradient algorithms - the classical LMS and the
Variable Step Size (VSS) LMS are presented here. Section
IV deals with the pure Kalman filter and its simplification
to the SKF one. It is shown that the pure Kalman filter can
be considered as the gradient algorithm and the SKF as the
step variable LMS. Hence, they can be compared with the
LMS family. Section V describes results of performed
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computer simulations and parameters of the mentioned
algorithms are compared here.

2. Principles of Adaptive Antenna
Arrays

2.1 The Pilot Signal System

The adaptive antenna based on the pilot signal was
developed in the late sixties by B. Widrow [3]. The
principle of the system is very simple - transmitier
transmits signal that is synchronously generated in the
receiving system, If no interferences are received by the
receiving antenna then the difference between the signal at
the antenna output and the generated signal (difference is
called error signal) is zero after the right amplification of
the received signal. On the contrary, if strong interferences
are received by the antenna system then the level of the
error signal can be very high, Hence, the directivity pattern
of the receiving antenna array is synthesized so as the
mean squared error can be minimized. Minimal error
signal means that minims of the directivity pattern are set
to the directions from that the most powerful interferences
come. By this way, the SIR at the antenna output is
optimized.

Synthesis of the directivity patiern is performed by
setting the proper amplitudes and phases at the outputs of
the antenna elements. In broadband applications, "the
complex weighting”" of the antenna elements” outputs is
realized by transversal filters with real adjustable weights.
An antenna element completed by the complex weight is
drawn in figure 1. All outputs of all antenna elements are
then summed to form the output signal.

\V kth antanna elemant
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k1 xk? xlr._lll-l xk ]

A4 W N\

towards the summator

Fig.1
An antenna element completed by the adjustable broad-band
complex weight. The adaptive array consists of N
half-wavelength-spaced omnidirectional elements.

The output signal can be expressed by the equation
M =WIHXE) (1)

where y(j) is the sample of the antenna output signal,
W(/)denotes thf_: column vector of the transversal filters’
weights — W) = [wia(), wi2(), ..., wia(), ... waadD],

X} is tHe column vector of signals at the delay lines’ taps
X7 =[x () X120, - Xaad), -, Xvar()), T denotes the

transpose, N is number of antenna elements in the antenna
array and A is number of taps of each transversal filter,

The error signal is given by the relation
e(iy=d() —y{7)
(d is the pilot signal} and the mean squared error

E{e*(D} = E{d?}+ WTR(x, )W — 2WTR(x,d).(3 )

(2}

In the above equation, E{..} denotes the expectation
operator, R(x, x) is the autocorrelation matrix of the vector
X() and R(x, ) is the cross correlation vector of the vector
X(7) and the pilot signal d.

From the mathematical point of view, relation (3)
describes a convex parabolic function in the MN
-dimensional space. Hence, the mean squared error will be
minimized if the gradient with respect to the weights’
vector W(y) is zero

VE[{e?} = 2R(x,x)W —2R(x,dy=0. (4)
Solving (4) yields the optimal weights’ vector
W()ﬂ :R_l(x,x)R(x,d). ( 5 )

Relation (5) is called the Wiener-Hopf equation.
2.2 The Steering Vector System

Principle of adaptive antenna array based on the
steering vector method was published in the beginning of
seventies by O.L. Frost for the first time [4]. The advantage
of the mentioned antenna is that it works without the pilot
signal, Hence, the electronic circuitry of the system is
significantly sitnpler.

The steering vector system is based on the

minimization of the expected total output power

P=ELA(} = WTR{x, x)W (6a)

under the constraint of preserving properties of the
receiving system in the direction of the main lobe of the
antenna array

CTW=F. (6b)

In the relation (6a), p(/} is sample of the output signal
expressed by (1), £{..} denotes the expectation operator,
W(/) is the column vector of weights and R(x,x) is the
autocorrelation matrix of the vector X(y).

Relation (6b) is a mathematical expression of the
following idea: "Phase of the desired signal arriving from
the main lobe direction is at all antenna outputs the same.
Hence, the antenna system completed by a transversal filter
at each antenna element output can be for the main lobe
direction replaced by one antenna element with a
transversal filter whose kth weight is the summa of kth
weights of all the transversal filters of the antenna system.
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If preserving antenna properties in the main lobe direction
is required then weights of the "joined" transversal filter
cannot change during the adaptation process." Now,
understanding, the meaning of symbols in (6b) is easy: F is
the column vector of weights of the "joined" transversal
filter, W{/) is the above described weight vector and C is
‘the matrix of coefficients that performs the process of

joining,

Solving the optimization problem (6) by the method of
Lagrange multipliers results in the following equation for
the optimal weights

W o, = R (x, x)C[CTR ™! (x,)C] 'F. (1)

Symbols used in (7) has been explained above.

3. Gradient Algorithms

Relations (5) and (7) are totally unsuitable for the use
in real-time systems because they require computation of
correlation matrices, their inversion and multiplication.
That is why the gradient algerithms have been developed.

Gradient algorithms use the instantaneous values of
signal to the estimation of the gradient of the minimized
function with respect to the weight vector. Then the actual
setting of weights is changed in the opposite direction of
the estimated gradient. By this way, weights are
recursively changed until they are close enough to the
optimal state. Recursive search for the optimal weights can
be expressed as

W( + 1) = W() ~ V() (8)

where W(}) is the estimated optimal weight vector, o is
the scalar constant controlling rate of convergence and
stability, V is the estimated gradient,

3.1 The LMS algorithm

Pilot signal system. Differentiating square of the
instantaneous value of the error sample (2) by the weight
vector W(/) yields

V() =—2e(DX() (9)

where e()) is the error signal and X(/) denotes the column
vector of signals at the transversal filters’ taps.

The complete adaptation algorithm can be then
expressed as

W( + 1) = W) + Zae() X(). (10)

Equation (10) is the classical LMS algorithm for the pilot
signal system.

Steering vector system. In the case of minimizing the
quadratic function {6a) under the linear constraint (6b), the
cost function

H(W)=2WTR(x, )W + A T(C"W - F) (1)

has to be extremalized. In (11), A is the column vector of
Lagrange multipliers and the rest of symbols has the same
meaning, as before.

Setting of weights is changed in the contra direction of
the cost function gradient related to the weight vector

V=Rx, )W+ CA, (12)

Computation of gradient according to (12) requires the
knowledge of the autocorrelation matrix R(x,x}. This
problem can be solved as it has been done at the pilot
signal system - expectation operator is removed and the
gradient is estimated from the instantaneous values of the

signal
V() =X(XT(IW() + CAj)
V() =X () + CAG) (13)
In (13), (/) is the output signal given by (1).

Let us substitute (13) for V(;) in (8). After performing
certain mathematical arrangements, we obtain the resultant
algorithm

W+ 1) = P{W() — ap()X()} + F (152)
where

F=C(CTC)"'F (15b)

P=1-C(CTC)CT (15¢)

W(0)=F. (15d)

Algorithm (15) can be considered as the LMS for the
steering vector system.

Summary. LMS algorithms are very simple and so
they are easily implementable by today signal processors.
On the other hand, they suffer from relatively slow
convergence rate, high misadjustment and the adaptation
stability problems - if the learning constant ¢ is too high
then the system oscillates, if o is too low then the system
does not work properly, optimal value of o can be
computed according to the relation

2

Chom =3 tr(R{x, x)) (16)

where #r denotes trace of the matrix.

Some new algorithms have been developed to remove
described disadvantages of the LMS algorithms by
additional control of . Description of one of the most
effective modified LMS algorithms is presented in the
following subsection.
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3.2 The Variable Step Size LMS algorithm

V8S LMS has been published in [1]. The adaptation
constant is here changed in the dependence on the squared

error

o/ + 1) = ne() +ye*() (17a)
Omax O+ 1) > Olmax
af+1)= Omin O+ 1) < Oin (17b)
o/(j+1)  otherwise

Here, 1 is a constant from the interval O0<my<1. Its
optimal value has been experimentally determined to 0.95.
A constant ¥ should be a positive number close to zero; ¥
does not influence misadjustment and negligible influences
rate of convergence. A constant Cmax is given by (16), a
constant Oy, provides the minimum level of tracking
ability,

Described algorithm shows quicker convergence rate
and lower misadjustment than the classical LMS. In
addition, it preserves the simplicity of the LMS. On the
other hand, the problem of the adaptation stability is not
solved here - if the algorithm shall be stable than the
autocorrelation matrix R(x,x) has to be known for the
proper determination of 0 max and O iy,

4. The Kalman Filter

The Kalman filter is an identification method that can
provide optimal estimate of state quantities of the state
model to that it is applied. Since we are searching for, the
optimal weights the weights’ vector W(/) is regarded as
the state one in our case.

The fact that adaptive antennas are static systems (the
working point is searched) significantly simplifies the state
model. Nevertheless the adaptation algorithm requires still
so high computational power of the control processors that
its use is extremely complicated in today systems. Hence,
simplification of the Kalman filter is required.

4.1 Pilot signal system

Application of the Kalman filter theory to the pilot
signal system that can be described by the state model

W( + 1) = W() (18a)
d() = XT(Y W) +v()

(v is called the residual error and has the same meaning as

the above error signal)
leads to the following set of equations [5]

(18b)

Wi+ 1) = W) + KOG - XT(HWG)] (19a)
K() = POXNOIXTG)PEIX() + R] ! (19b)
P(j+ 1) = P() ~ K(XT()P() (19¢)

Here, W denotes estimate of the optimal tap-weight vector,
K is the Kalman gain vector, d denotes the pilot signal, X
is the tap-input vector, P is the predicted state-error
correlation matrix, R denotes the variance of the residual
arror.

In (19), if we consider
o) V() =K d) - XTOW() |

then the Kalman filter can be regarded as a gradient
algorithm.

Computational requirements of the Kalman filter (19)
can be significantly reduced by the use of only diagonal
elements of the predicted state-error correlation matrix P

in the iteration process [9], [10].

The i-th diagonal element of P can be understood as
the variance of the i-th weight estimate error (mean of the
error is supposed to be zero)

pri=E{(W; —w)*}

where w; is the actual estimate of the i-th optimal weight
w;and £ denotes the statistical expectation operator.

(20a)

Non-diagonal elements of P contain information about
the "cross-variance" of the i-th a j-th optimal weights
estimate errors

Py = E{(w; —w)(¥ —w)} (20b)

Hence, if the cross-variances are not considered in the
iteration process the loss of information negatively
infleences parameters of the Kalman filter - rate of
convergence is lower and misadjustment higher. On the
contrary, computational requirements drop from the order
of (M.N)? to the order of (M.N) where (A/.N) is the total
number of weights. In comparison with the LMS
algorithm, number of mathematical operations per
iteration is approximately three times higher,

The Simplified Kalman filter (SKF) can be expressed
by the following set of equations

(21a).

Wi(j + 1) =W, + ki(De(r)
mEl Puln(D+R
pily+ 1) = py(NI1— ki (xi(7Y] (21c)

Here, w, is the i-th component of the optimal weight
estimate vector, k; denotes the i-th component of the
Kalman gain vector, e denotes the error signal (difference
between the pilot signal and the antenna output one), x; is
the i-th component of the tap-input vector, p, is the
variance of the i-th weight estimate error, R denotes the
variance of the residual error and AN is the number of
weights,
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In addition to the computer requirements' reduction, the
use of only diagonal elements of the predicted state-error
correlation matrix P soives the problem of the numerical
non-stability of the Kalman filter too. All the quantities in
the denominator {21b) are non-negative. If the variance of
the residual error R is positive then the denominator can
never equal zero. On the contrary, the non-zero
denominator of the pure Kalman filter (19) cannot be
guaranteed. Hence, the pure Kalman filter can oscillate
from such a "non-adaptive reason” (see figure 2) whereas
the SKF not.

Substituting (21b) to (21a) yields

LD (e(r)

—_ 22
3 pmxi + R (22)

\:l"i(f+ 1) —_ ‘:V;(].)'f'

If the fraction in (22) is considered as the controlled
adaptation step of) then the SKF can be classified as the
step variable LMS algorithm.

Assume that the variance of the residual error

1% 2
R >>max [E]Z;,p,-x,. (23)

then the (22) can be rewritten
i+ 1) = ) + xilel) (24)

that is the classical algorithm LMS. Condition (23) can be
considered as a modification of the stability condition of
the algorithm LMS (16).

It can be concluded that the simplified Kalman filter
converges to the optimal LMS algorithm for very high R.
In the opposite case (R is close to zero), the simplified
Kalman filter converges to the pure one because the
feedback estimation of the optimal Kalman gain vector is
not suppressed by the variance of the residual error R.
Validity of this idea has been verified by the computer
simulations (see figures 3 and 5).

4.2 Steering vector system

The steering vector system can be described by the
following state model [6]
Wi+ 1) = W()

0 X7 vi7)
= W+
[F] { c YO v
where W is the column vector of weights, X is the
tap-input vector, ¥ is the weight vector of the joined
transversal filter, C is the matrix of coefficients that

performs joining transversal filters (see equation. 6b} v, is
the residual error defined as

vrf) = -XT(YW()

and V. (/) is the column vector of the constraint errors (kth
element of the V.{j) is defined as the difference between

(25a)

(25b)

kth weight of the desired joined filter and the actual sum of
weigths at kth taps of all transversal filters.

Application of the Kalman filter theory to the state
model (25) yields

X7()

o }v'vm} (262)

W(+ 1):W(;’)+K(;){[ g ]—[
X -1
K() = POIX() C]{[ % ]P(J)[XU)CHQ} (26b)

P(+ 1) = P()— K(j)|: X™() ]P(j) (26¢)

Here, W denotes estimate of the optimal tap-weight vector,
K is the Kalman gain matrix, X is the tap-input vector, ¥

is the weight vector of the joined transversal filter, C is the
matrix of coefficients, P is the predicted state-error
correlation matrix and Q is the correlation matrix of

o) VIO

Evidently, computational requirements per iteration of
the above algorithm are enormous. Hence, we will use in
the iteration process diagonal elements of the predicted
state-error correlation matrix only. In this way, the
computational requirements of the algorithm will be
significantly reduced without any dramatic degradation of
the positive properties of the constrained Kalman filter as
it has been shown at the pilot signal system.

Taking in mind that iterative search for i-th optimal
weight is controlled first by the power of the total output
signal and second by the constraint that the sum of kth
weights of alt filters equals kth weight of the desired joined
transversal filter, we can conclude with respect to (26a)
that only two elements in each row of the Kalman gain
matrix are necessary to be computed. Implementation of
this idea involves another decrease of computational
requirements.

Finally, computational requirements of the algorithm
can be significantly influenced by the method of the matrix
inversion in (26b). It can be shown that desired high
effectiveness of the inversion computations is guaranteed
by the method of algebraic complements [8].

After realizing all the above ideas, we can express the
constrained simplified Kalman filter by the following set of
equations (for details see [10])

B+ 1= )~ s () 3 O')+krm1(f)[ S ]

n=1

0611(1)—A(I) (27b)
N
1 E DX ()
mEL aa() = am () =g (270)
Gz-m + E PIU)
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[Erom0]| |5. C ter Simulati
mE] amalp= oht 3o+ ﬁ‘pﬂw . Computer Simulations
#=1

i
Ldgm+"§lpl(])_]

2
MN M [é';': Pl()")xx(}")-l M N
Ay = 2_: piixtproi=-3 ==—— ] [03m+ E;Pf(f)]

N
m=1 0.3-4_ EP'U m=1
n=l

k() = piNExDa1,10) + @m0 ()] (271)
kpmn (1) = 2iDxNa 11 ) + Gt 1 (D] (27g)
P+ 1 = D =k () — Bt O (27h)

Coefficients of the equations (27) can move in the
following intervals:

m=1.AF (M is the number of the transversal filter taps)
n=1.N (N is the number of antenna elements) and
l=n+{m- 1N .

Symbols in (27) denote: w;y is the 1-th optimal weight
estimate, ky; is the element of the Kalman gain matrix, x,
is the sample at the i-th tap, for is m-th weight of the joined
trangversal filter, @i, is the element of the inversion
matrix, A denotes the determinant of the inverted matrix in
(26b), p; is the variance of the 1-th weight estimate error,
g? is the variance of the residual error and o%, is the
variance of the constraint error of the m-th weight of the
joined transversal filter,

Since the theoretical analysis of the adaptation stability
of the proposed algorithm is rather complicated let us state
here only that the simplified filter is not sensitive to the
initial values of the weights and variances of weights'
errors and that no stability problems occur if the variance
of the residual error is positive and variances of the
constraint errors are not lower than one [10]. Other
adaptation properties of the algorithm will be demonstrated
by the computer simulations.

With regard to the numerical stability of the algorithm,
the relation (27e) shows that the inverted matrix is singular
if and only if

N p
M [EIPI(I')IJ(I')} MN
Y= o= Y pix()

n=1 0.‘2””_}_ ZP!(]) =1
w=l

(28)

Hence, the numerical stability of the simplified
constrained Kalman filter is not guaranteed but it can be
shown that the probability that the inverted matrix is
singular is significantly lower in comparison with the pure
constrained Kalman filter.

5.1 Pilot signal system

At the first time, computer simulations of a
two-element antenna array (omnidirectional elements
spaced the half wavelength) with a four-tap transversal
filter at each antenna element output have been performed.
Desired signal (white, variance 1) has come from the
direction that has been perpendicular to the array aperture.
Interference signal (white, variance 50) has arrived from
the direction departing 45 degrees from the desired signal
direction. Thermal noise of variance 0.5 has been
considered.

Figure 2 illustrates the numerical stability problems of
the pure Kalman filter (dashed line} when the variance of
the residual error is too low (R=10"%) and the shon
mantissa is used (7 digits). On the contrary, simplified
Kalman filter (solid line, R=10"%, 7 digits" mantissa)
exhibits no oscillations.

uith
z

Fig.2
Pilot signal system. Time course of the output signal of the
adaptive antenna controtled by the pure Kalman fiter {dotted) and
the simplified cne {solid).

Figure 3 shows the time course of the
ensemble-averaged squared error (20 ensembles) of the
classical LMS algorithm (learning constant ¢ = 1076 } and
of the simplified and pure Kalman filters ( variance of the
residual error R =101 for the pure Kalman filter and
R=107¢ for the simplified one). Evidently, both the rate of
convergence and the misadjustment of the simplified
Kalman algorithm are lying between the LMS and
Kalman's ones.

Eounrad] L4S
Error

lm-2

Am-3

2% =0 ™ 100 P13 iS50 7 a0a a: 250 itar.

Fig.3
Filof signal system.
ensemble-averaged

Comparison of the time courses of the
squared error of the adaptive antenna
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controlled by the LMS algorithm (dotted), pure Kaiman filer
(dashed) and simplified one (solid).

Figure 4 provides comparison of the variable step size
LMS algorithm (11=0.95; Y= 1077; Olmax = 107°) and the
simplified Kalman filter (R =107%). It can be concluded
that the SKF and V88 LMS have approximately the same
rate of convergence. SKF excels in lower misadjustment
and independence on a priori information about noise
statistics. VSS LMS exhibits lower computational
requirements (see table 1). Squared error has been
averaged through 20 ensembles.

Teprarwd] UTT LHE
Crvar

10

Fig.4
Filot signal system. Comparison of the time courses of the
ensemble-averaged squared error of the adaptive antenna
controlled by the variable step size (VSS) LMS algorithm (solid)
and the simplified Kalman fiiter (dotted).

Figure 5 shows the time course of the
ensemble-averaged squared error (20 ensembles) of the
simplified Kalman's algorithm for R=10"% and R=10%.
Evidently, no stability problems occur. If R is increased
then the level of misadjustment grows and the rate of
convergence drops,

Bipriarwad| B = 1ued
Frenr Nz le-S

-

- 36 3 100 i23 130 173 200 =3 250 1ter.

Fig.5
Filot signal system. Comparison of the time courses of the
ensemble-averaged squared error of the adaplive antenna
controlied by the simplified Kalman fiter with different variances
of the residual error: R = 1073 {dotted} and R=10*? {solid).

Second kind of simulations has been performed with
the 8-element antenna array that has been completed by
the narrow-band weights (2-tap transversal filters). Desired
signal (harmonic, amplitude 1) has come from the main
lobe direction, first and second interferences (harmonic,
amplitude 50) arrived from directions 22 degrees and 68
degrees. In these directions, local maxims of the directivity
pattern of the non-adaptive array appear (figure 6a). After
5 iteration cycles, systems based on the Kalman filter and

the SKF show expressive minims in the interferences’
directions. On the contrary, the LMS based systems set
directivity pattern minims to the desired directions
evidently more slowly (figure 6b). Figure 6¢c shows the
directivity pattern in the steady state.

Fig.6a
Directivity pattern of a non-adaptive antenna array consisting of 8
omnidirectional elements spaced half wavelength.

4
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Fig.6b -
Pilot signal system., Directivty pattern of the B-element
half-wavelength-spaced antenna array after 5 iteration cycles.
Control algorithms: |.MS (dotted), pure Kalman filter {dashed) and
the simplified Kaiman fiiter (solid).
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Fig.6c
Filof signal systern. Directivity pattern of the 8-element
half-wavelength-spaced antenna array after 50 fteration cycles.
Control algorithms: LMS (dotted), pure Kalman filter {dashed) and
the simplified Kalman filter (solid).
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5.2 Steering vector system

Steering vector system has been tested by the same
kind of simulations as the pilot signal one.

Results of the broadband simulations ( two-element
antenna array with a four-tap transversal filter at each
antenna element output, white desired signal with variance
| arriving from the main lobe direction, white interference
signal with variance 50 arriving from the direction 45
degrees) are presented in figures 7 - 9.

Figure 7 shows the time course of the
ensemble-averaged squared error {20 ensembles) of the
LMS algorithm (learning constant o =10"") and of the
simplified and pure Kalman filters (variances of both the
residual and the constraint errors 1 for both filters).
Evidently, both the rate of convergence and the
misadjustment of the SKF are lying between the LMS
algorithm and the pure Kalman filter.

Sapaarad|i &7
Lrrer it -

lase3 }'
i

Lesi

f "'?-.',: v e S
:

in-2 as an = 10aty 123 130 173 200 a2

Fig.7
Steering vector system. Comparison of the time courses of the
shsemble-averaged squared error of the adaptive antenna
controlled by the LMS algorithm (dotted), pure Kalman filter
(dashed) and the simplified one (solid).

Figure 8 shows the time courses of the
ensemble-averaged squared error (20 ensembies) of the
simplified constrained Kalman filter for ¢Z=10"% and
o2 = 10** (variances of the constraint error have been all
the time set to 1). Evidently, no stability problems occur. If
the variance of residual error grows then parameters of the
adaptation process become worse.
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Fig.8
Steering vector system. Comparison of the time courses of the
ensemble-averaged squared error of the adaptive antenna
controlled by the simplified Kaiman filter with different variances
of the residual error: £ =10+ (dotted} and R = 10~* (solid).

Figure 9 illustrates the influence of the change of the
variances of the constraint errors. It can be seen that the
growth of the variances positively influences behavior of
the system.
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Steering vector systemn. Comparison of the time courses of the
ensemble-averaged squared error of the adaptive antenna
controlled by the simplified Kalman fitter with different variances
of the constraint errors: (dotted)and (solid).

Figure 10 presents result of the narrowband simulation
(8-element antenna array completed by the 2-tap
transversal filters; desired signal harmonic with amplitude
1 arriving from the main lobe direction, first and second
interferences harmonic with amplitude 50 arriving from
directions 18 degrees and 68 degrees). It can be seen that
LMS has some problems in the direction 68 degree in the
steady state. This effect is probably caused by the.relatively
high level of misadjustment of LMS algorithm.
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Fig.10
Steering vecfor system. Directivity pattern of the B-element
half-wavelength-spaced antenna array after 50 iteration cycles.
Control algorithms: LMS (dotted), pure Kalman fiter (dashed) and
simple Kalman filter (solid).

Computational  requirements of the presented
algorithms have been tested by the Turbo Profiler, version
2.2, Borland International. Measurement results are
summarized in the table 1. It can be seen that
computational requirements of the simplified Kalman filter
are approximately three times higher in comparison with
the LMS algorithm in the pilot signal system and nearly
the same as the LMS shows at the steering vector system.
The pure Kalman filter consumes incomparable longer
computation time of the processor and its requirements
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grow approximately quadratically with the number of
weights. On the contrary, computational requirements of
the V&S LMS algorithm are very close to the LMS one.

PILOT SIGNAL STEERING VE
algorithm 8 taps 16 taps 8 taps 16 taps
LMS 100 190 899 3,31.10°
VSS LMS 110 195 -— -
Kalman 1,03.10* | 7,02.10" | 2,54.10* | 1,74.10°
SKF 331 644 853 1,70.10°
Tab.1

Computational requirements of the presented algorithms. 8-tap
pilot signal system controlled by the classical LMS algorithm is
taken as the reference (100%).

6. Conclusion

Presented paper compares algorithms that can be used
for the control of adaptive antenna arrays based on the
pilot signal method and the steering vector one. The
classical LMS, the variable step size LMS, Kalman filter
and simplified Kalman filter have been investigated.

It has been shown that the control algorithm based on
the pure Kalman filter can be considered as the gradient
one and that the simplified Kalman filter behaves as the
step variable LMS algorithm.

Computer simulations have proved that the simplified
Kalman filter is the most convenient algorithm for digital
control of adaptive antennas: SKF excels in relatively high
rate of convergence, low misadjustment and high total
stability, is not sensitive to the a priori information about
noise statistics, and does not require high computational
power of signal processors.

The VSS LMS algorithm exhibits similar properties. In
addition, computational requirements are approximately on
the same level as LMS. Unfortunately, insurance of the
adaptation stability of the VSS LMS requires knowledge of
a priori information about noise statistics.
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