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Abstract

This paper deals with a large class of
nonlinear digital filters, the stack filters, which
contain all combinations and compositions of rank
order operators within a finite window. Attention is
given fo design and effective  hardware
implementation of an optimal stack filter for
image processing. Presented simulation resulis
confirm robustness of stack filters in the image
restoration corrupted by impulsive noise.
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1. Introduction

Rank order filters have been used in both signal and
image applications. These filters work well in many
situations in which other filtering techniques either fail or
are inappropriate. For instance, they can remove impulsive
noise such as speckle noise, from images without blurring
the sharp edges usually occurred in images [1]. Great
advances have been made in the design and
implementation of stack filters (SF's), which constitute a
broad class of nonlinear filters based on order statistics
[2-7].

2. The definition of stack filters

A SF's are nonlinear digital filters with sliding
window. Each filter in this class possesses the weak
superposition property known as the threshold

decomposition (TD) and an ordering property known as
the stacking property [2]. For simplicity we will use
notation for 1D processes. Extension to 2D processes is
straightforward. Let X(n) be an arbitrary time discrete
bounded signal. Let Xy =[X1,X2, ... Xn]"
=[X(n),X(n—-1), ..., X(n— N+ 1)}T denote sampled and to
M levels quantized version of X(n). Then the TD of X;
(M-level value), called threshold signals xj'" (2-level
values) whose elements are defined by

1 if X52m
0 if X<m

m=12..,M-1

J=L2,..N M

*p = Tm(XG) =(

In Fig. 1 we show the TD architecture of SF.
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Fig.1
The TD architecture of SF for M=4 and N=3

Mathematically Fig.1 states the following superposition
property for the SF S/(.) based on the binary function f{.):

s =3 E, k) | ='E, ("X =
=:'z::3-'~(n) =’:)_S: fw) @

The TD states that stack filtering of multilevel
signal is the same as the first decomposing it into a set of
binary signals by thresholding then filtering each binary
signal with a binary SF, and, finally adding the results of
these operations. The second property of SF's is called the
stacking property, which is an ordering property. It is best
described as follows: if the binary output signal of each of
the Boolean operators on the threshold level in Fig.1 are
piled on top of each other according to their threshold
level, the result is always a column of 1's supporting a
column of 0's. It has been proven that the necessary and
sufficient condition for binary function f{.) to possess the
stacking property is that it is positive Boolean function
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(PBF) [2]. The number of SF's for any fixed window width
N is at least 27, where y=2(¥21 [2 3], where [x] is the
smallest integer larger than or equal to x.

3. The design of stack filters

3.1 The optimal stack filtering

The optimal problem over the class of SF's can be
stated as shown in Fig.2.

lN(n)
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Fig.2

The optimal fittering problem

S(n)
—

The process X(n) (e.g. a corrupted image) at the
input of SF is assumed to be a corrupted version of desired
process S(n) (e.g. an original image). The corruption is a
noise process N(n). At each time instant n, the SF output is
an estimate called S(n) of the desired process S(n). This
estimate is_based on the observed sequence Xy(n) in the
window of the SF, thus

. M=,
Stm)= Z s™(m) =SAXn(m) &)

The goal of optimal stack filtering is to find a SF
from the class of SF's with window width V such that the
mean absolute error (MAE) between the filter output and
the desired signal is minimized. If S(n) and X(n) are
jointly stationary, then the cost to be minimized is

BljSt) - S0 = E, Blls"(n) AT K] (4

The optimal filtering problem over the class of SF's
under the MAE criterion can therefore be formulated as an
zero-one integer linear program (LP) [2,3]. The complexity
of the LP, O(N2V) [2], increases faster than exponentially.
This obstacle appears even for relatively small window
sizes. For illustration, the LP for 4x4 window contains over
a million variables and constraints. The suboptimal design
procedure presented in [4] does not require the use of LP.
The only computation involved is data comparisons whose
number increases slower than exponentially as a function
of the filter window width, thus this optimization
algorithm is more efficient and suitable for large scale
optimization problems in image and signal processing,

3.2 The adaptive stack filtering

This approach eliminates the stationarity
assumption, it is computationally more efficient and it does

-

not require direct computation of the statistics of the
corrupted and desired images [5]. It does, however, require
the existence of training sequence.

The truth table representation of the PBF has been
used in mentioned optimal SF's algorithms. However, the
exponential increase of the elements in the truth table of
PBF with respect to the number of its variables limits these
optimal stack filtering algorithms to be used only for small
windows. In order to overcome the above difficulties it is
essential to use a concise representation of PBF different
from the truth tables. An efficient way to represent PBF is
neural network (NN) representation of an arbitrary PBF

[61.
3.3 Neural network stack filters

Neural network representation of PBF has several
distinct advantages [6]. First, the number of the parameters
to describe a SF is much smaller than the number of
elements in the truth table of the corresponding PBF.
Second, SF's can be implemented using sorting operations
in the real domain rather than using the threshold
decomposition architecture, This property is useful in
software realization of SF's. Third, the relationship between
SF's and NN opens up the possibility to find optimal SF's
under mean square error (MSE) criterion. This is
impossible if the algorithm is based on the truth table
representation of PBF. A NN consists of a large number of
simple processors called neurones. The neuron has inputs
X1,X2,...,x . These inputs can come from other units, or
from some external source. The inputs {x;} and weights
W = {W,} are accumulated into an activation potential

L
= - 5
h j=lejxj Wo (%)

where W, denotes the threshold of neuron. The
output of the neuron is in general nonlinear function o(h)
of the activation potential. It has been shown, that one
neuron can realize small subset of Boolean functions
known as linearly separable Boolean functions [6]. An
arbitrary PBF can be represented by two layer perceptron
(one hidden layer) with a sufficient number of neurons in
the hidden layer. The optimization problem can be solved
using the modified backpropagation algorithm which is
summarized for the proposed structure of SF using one
neuron as follows [6]:

» 1. Initially set all weights to small positive values

» 2. Present an input vector Xy(n) and the output
S(n) ’

> 3, Use
§m(n)=Usg(WT(n-1)x"(n)) m=12,.M-1

> 4. Adjusts the weights by using the recursive
algorithm
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Wo(n>=P[Wo(n~ n-u'E o"'<n>]

Wytn) = P{ Wyn = 1)+ 5, 5"(ndetr |
j=1,2,.,N

where

O™ (n) = (5™(n) ~ F () (m)(1 - 37 ()

p>0 is adaptive step-size
%X if x20
PR=Co i v <o

Us(h) = 1/(1 + exp(~h))

In the case of 2D data (e.g. images) we can optimize
this algorithm because the process X(n) has a special
structure [8].

4.1 Realizations of Stack Filters

4.1 Parallel realization

For an M-valued signal, we can first decompose it
into a set of binary signals by TD, then filter each binary
signal with a binary filter, and finally, add up the results of
these operations. This is the so-called threshold
decomposition architecture realization or binary processing
approach expressed by (2). The binary processing approach
can be used in highly parallel VLSI implementation. The
binary filters on each level of the TD architecture can be
implemented by digital or analog hardware.

The main drawback of this realization is an A/D
converter array which perform TD and must precede
threshold decomposition architecture. The hybrid
realization without A/D converter array is proposed in the
following section.

4.2 Hybrid realization

Hybrid realization of SF is based on the stacking
property and on the same principle like mixed analog
digital realization of a median filter. In the hybrid
realization of SF (HRSF) [9], the signal processing is
performed on the border between the analog and the digital
worlds, where a set of analog signals is used as inputs, and
digital data are obtained as the output. The advantage of
HRSF is possibility to obtain both analog and digital
outputs.

4.3 Realization in the real domain

The positivity of the weights of neural stack filter
(NSF) opens up the possibility to calculate the output of the
SF in the real domain (without the TD) using sorting

operation [6]. The output of the SF over samples
X1,X3,...,Xy can be calculated as follows. Starting from
the higher end of the sorted set of samples, add up the
corresponding weights until the sum W > W,. The output
of the SF is the sample corresponding to the last weight.

5. Simulation Results

To visualize the differences in performance for
some of the filters described in this paper and median filter
which is widely used in practice we present the results of
restoration of images corrupted by impulsive noise. We use
common image "Bridge" with raster 256x256 pixels and 8
bit resolution (Fig.3a). The observed image was corrupted
by impulsive noise with probability of impulses 10%. In
this simulation, the impulses were set to random values
from 0 to 255 (Fig.3b). NSF was trained by using the
upper left quarter of the original image "Bridge" and noisy
image "Bridge". We used the simplest case of NN a single
neuron, which gives comparable results like NN with one
hidden layer. Training a 3x3 NSF takes less then one
minute of CPU on PC AT 386/33 by using optimized
algorithm [8]. The filter resulting from the training phase
were then used to filter the noisy image "Bridge" (Fig.3d).
The same noisy image was filtered by a 3x3 median filter
(Fig.3¢) and 3x3 optimal stack filter (OSF), that was
designed using method in [4). The MSE and MAE values
of the restored images are listed in Tab.1 for image
"Bridge" with different probabilities of impulses filtered

Window | Bridge Bridge Bridge Bridge
3x3 0% 5% 10% 15%

MA|MS |MA|MS [MA|MS [MA|MA
E|E|E|E|E|E|E|E

OSF |2.09]29.9]|2.80( 62.8{ 3.67| 107.] 4.57| 155.
0 0 00 { 00

Tab.1 )
The MSE and MAE values of the restored image "Bridge"

with optimal filters for 10% probability of impulses and
median filter.

The same experiments was performed on image

Window | Lena 0% | Lena 5% |Lena 10% | Lena 15%

3x3 IMA[MS |MA[MS [MA[MS |MA|MA
E|E|E|E|E|E|EI|E

OSF 10.70| 5.25{ 1.12( 20.7| 1.77{ 58.3| 2.70| 57.0
0 0 0

NSF 0.66( 4.92]| 1.09| *** | 1,78 *** | 2 86 **+*

Tab.2
The MSE and MAE values of the restored image "Lena"

"Lena", which represent image with different statistics.
The results are summarized in Tab.2.

From the experimental results one can observe
that the NSF gives much better performance than a 3x3
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Fig.3

Filtering the image "Bridge” degraded by impulsive noise with 3x3 filters : a/ original image, b/ noisy image, ¢/ median filter, d/ neural stack
fiter

median filter and comparable with 3x3 OSF. The filtering
of image "Lena" was performed in order to show the
robustness of SF against image and noise variations.
Therefore, in practice we can train using typical images
and noise, and then apply the resulting NSF to a variety of
images. In order to investigate the coefficient sensitivity of
NSF, the effect of word length changes was simulated. It
was shown, that NSF with 5-bits word length gives the
same results as the NSF with floating point representation

[10]. Such a degree of accuracy might be easily attained
with analogue circuitry. This fact opens up a new
possibility of using nonlinear digital filters for real time
signal processing based on analog hardware.
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6. Conclusions

In this paper we describe a large class of non-linear
filters, the SF's, and the methods for optimal SF design.
Simulation results confirm that at the expense of additional
computations we can find filters which are robust to
changes in statistical characteristics of image and
impulsive noise and are better than conventional median
filters. Especially, the NSF as a concise representation of
SF can provide novel filter structures which allow to
implement SF's effectively without the threshold
decomposition and opens up the possibility to use the
existing training algorithms of NN optimized for 2D
images to estimate optimal SF's. It was shown that NSF
based on single neuron gives comparable results as optimal
SF based on truth table representation.
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