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Abstract \

Presented paper deals with the reduction of
computational requirements of gradient algorithms
for the control of adaptive antenna arrays. Reduction
of arithmetical complexity is reached here by the
application of a block signal processing to adaptive
algorithms. Block versions of the classical Least
Mean Square (LMS) algorithm and the Simplified
Kalman Filter (SKF) are described in this
submission. Adaptation parameters of the presented
algorithms are illustrated by results of computer
simulations. The block SKF (BSKF) exhibits twice
higher computational requirements than LMS, the
same misadjustment as LMS and lower rate of
convergence than LMS when transversal filters have
great number of taps and when relatively high block

length of BSKF is used. j

N

1. Introduction

An adaptive antenna array is an antenna system that
automatically sets minims of its directivity pattern to
directions from those the most powerful interferences
come. Desired function of the adaptive antenna is usually
reached by the method of the pilot signal {1], [2].

input

The pilot signal is a signal of exactly given timc
course that is synchronously transmitted by the transmitter
and at the same time generated in the adaptive antenna

| system. If antcnna receives no interfcrences (only the

transmitted pilot signal is received) then the differcnce
between the signal at the antenna output and the generated
pilot signal is zero-th after the proper amplification of the
output signal of the antenna. On the contrary, if powerful
interferences are coming to the antenna array, the
difference between the generated pilot signal and the
antenna output one ( the difference is called the crror
signal) is non-zeroth and its power is proportional to the
power of received interferences. Hence, directivity patiern
of the adaptive antenna is synthesized to minimize the
mean square of the error signal. If the mean square of the
error signal is minimal then the adaptive antenna system
"maximally suppresses signals coming from direcfions of
the interferences' arrival" or by other words "miniins of the
antenna pattern are set to the directions of the
interferences’ arrival".

Synthesis of the antenna pattern is realized by the
complex weighting of signals at outputs of antcnna
-elements. Broadband complex weighting is performed by
the transversal filters (fig.1). Zero-th tap of the transversal
filter is the direct branch of the complex weight the other
taps act as the quadrature branches for respective harmonic
components of the processed signals. Hence, complex
weighting of the broadband signal can be realized by the
real weighting of the delay line taps.

Optimal values of complex weights (thc Wicner
optimum is supposed) are usually sought by gradicnt
algorithms. These algorithms iteratively change setting of
weights in contra-direction of the gradient of the mcan
square error.
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Fig.1 Broadband complex weight realized by the transversal fitter
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The proper function of the adaptive antenna system

is conditioned by sufficiently. high number of taps: of’

transversal filters. That is why adaptive sefting of filters'
weights exhibits high computational - requirements - in
digital
arithmetical complexity of gradient

intensively investigated at the present time.

algorithms  are

Several ways of the reduction of computational
requircments have been so far published [3], [4]. Presented
© paper reveals new approach to the solving of this problem -
application of the block signal processing to adaptive
algorithms, '

Block version of the Least Mean Squarc (BLMS) |

algorithm that has been published in 5] is here applied to

the control of adaptive antenna (section H).In section III,

block version of the Simplified Kalman. filter (BSKF) is

derived. Section IV describes results of computer |

simulations of block algorithms.

In this paper, an antenna array consisting of M
omni-dircctional clements spaced the half wavelength is
supposed. Output of each antenna element is completed by

the N-tap transversal filter (fig.2).
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Fig.2 Structure of the antenna array

2. Block version of the LMS algorithm

The LMS is onc of the most popular algorithms for

the control of adaptive antenna arrays. Relatively low |

computational rcquirements and simple both analog and
digital implementation are virtues of the LMS, adaptation
nen stability and relatively poor adaptation parameters are
its drawback.

Block version of the LMS algorithm applied to the
transversal filter structure has been described in [5].
Derivation of the algorithm [5] modified for the control of
adaptive antenna, the structure of which has been described
in scction I, follows.

systems and why methods of reduction’ of '

Output signal of the antenna array is

W)= B m bl W)= £ X6 W)

r=l i=0

2.1)
where

W is the column vector of optimal weights' estimate
of the transversal filter ‘at the output of the r-th

antenna element,

r

X, is the tap-input column vector of the transversal
filter at the output of the r-th antenna element,

is the i-th term of W, and
X, is the i-th term of X,

is number of antenna elements,

M
N is number of taps of each transversal filter and
T

denotes transpose. -

Algorithm LMS can be expressed by the followmg
set of equations’

“. (2.22)
W, (j +1) = W, (i) + ses). X () @.2b)

In (2.2), u is the adaptation constant. z influences
rate of convergence and stability of the algorithm.

Let us write (2.2) at time j-/

(2.3a)

elj-1)=d(j-

r=l

)-SXI(j- )W - )

o W)= W (=1 + pe(j-1).X.(j-1) (2.3b)

Substituting (2.3b) into (2.2a), we obtain

)= dj)- S X)W (j -

r=l

1) - el -

3 X ()X -1)

-d)-EXIOWO-)--0h) s
with
)= 1S XE ()Xo (1) @.5)

r=t
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Combining (2.3a) and (2.4) results in the matrix
equation ‘

VRRAL e e St s v

Rearranging (2.6) yields 0
F T P
@7

Now, let us turn our attention to the last term of
(2.7) - even- and odd-numbered terms of the involved
vectors will be grouped

[xl (J'—l)}wr (- 1)_[x,,c(j--l) xxl(;](;)l) .

xr.o( j)

X7 (5)

___[x,(j-l) x(j-2) ..
() x(-1)

=[xr(j—1) x(j-3)

Let us assume that transversal filters have even
number of taps V. Then (2.8) can be expressed in more
compact form

[x,' (- 1)]_ W.(i-1)= [A,J () Ana( j)}[w,,o( j- 1)}

X7(j) Arl.o(j) An() | Wa(i-)

2.9

where

i xr(j“N+1)

x(j-N+1) x(j-
w() %(-2) . w(-N+2) w(j-

Avo()=[x() #(-2) .. x(i-N+2)]
An()=[e =) 2= . 5N )]
Au()=[x(-2) =(i-4) .. x(j-N)
Wea(j=1)=[wro=1) wea(i=1) . wowaj=1)f

Wea(j=1)=[wra(j=1) wea(j-1) . wwa (j = 1))

(2.10)
Wr.'O(j - l)
xena(i-))| wali-1) |~
Xr.,N~1 (_]) ‘ : )
' Wr’,N—l(j - 1)
Wr.O(j - 1)
% (j~N) } wa(j=1) | _
Wr N-1 (j_ l) [ Wr.O(j - 1) ]

We,2 (j"‘ l)

Wr.N—Z.(j ~1)
wr(j=1)
wea(j=1)

2) x(j-4) .. n(i-N) J

1) x,(j-s) . %e(j-N+1)

(W1 (= 1) ]

Substituting (2.9) to (2.7) yields

0L W R )
.11y

The same kind of work that has been performed for
the computing of error signals can be done for updating
weights. First substitute (2.3b) into (2.2b)
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W, (j+1)=W,(j~1)+ pe(5) X (j) + pe(i - 1) X, (j - 1) @.12)
or, with the above notations
Wro(j+1) =Fw,,§(j‘—1)'+ A2, il AR0)
o Wi el | R e
_[WeoG=1)] . TAT(G) ATa()][eli-1)
_w’-'(j“l)_ #.!:AZJ(J') Af!(/)][ e(j) J (2.13)

Equations (2.11) and (2.13)are the exact equivalent of the classical LMS algorithm (2.2). Reduction in arithmetic
complexity can take place by rewriting (2.11) and (2.13) as ‘

et WS

The filtering operation
Ar,l (j)- [Wr.o (j - ]) + Wr_l (j - l)]

is common between the two terms of (2.14a), and the
overall arithmetic computation is now that of three length

NJ/2 filters, instead of four. Computations in (2.14b) are
similar .

The term S(j),that has been defined as a scalar
product of length N, can be computed recursively from

5(j-2) as

s(]): J(j—2)+ﬂ.g{Xr(j-1).[Xr(j)+Xr(j-2)]'

=x(j=N=1)[x(j= N)+x(j- N -2)]

(2.15)

This algorithm is provided for block size L= 2 ,
which means that error signal and weights are computed
once during two samples. Arbitrary block size is defined
similary. Larger block size provided larger reduction of
aritmetical complexity. Generalization of the algorithm
(2.14) to an arbitrary block size is described in [9].

Wr.o(j— l)+ Wr.l(j"’ l)
Weo(j=1)+ Woa(j-1)

+

Ar2() - Ao j)}. W..(j - 1)]}

Ara(j)= Aro(f)} Weo(j -1)

-

rWr-O(j+l)]=[w,,o(j—1)]+y{ AL () el - D) +e()]-[Ar1() - Aro ()] () }
(Wea(G+ )| [ WG =D || AT (D) [e(7- 1)+ e()]+[Ar2 (D= Ara ()] -eCi-D) |

3. Block version of the Simplified
Kalman Filter

Simplified Kalman filter (SKF) and the analysis of
its parameters have been described in [6], [7] and [8]. SKF
excels in very good adaptation and numerical stability.
relatively high rate of convergence and relatively low
computational requirements. SKF can be expressed by the
following set of equations

wea(j +1) = wes () + krs (7). €()) 3.1a)

k() = ez 0) (3.1b)
22 P () H0)+R

s +1) = pra(M 1= krs () 2na ()] 3.1c)

where

W,; is estimate of i-th optimal weight of the r-th
transversal filter,

k

ri

denotes i-th component of the Kalman gain vector of
the r-th transversal filter,
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e is the error signal (diﬂ'erence between the pilot
signal d(j) and the output signal of the antenna)

e(j) = d(j) - rﬁ:;x,f(j)w,(j) , 3.1d)

( W, is the column vector of W,; and X, is the
column vector of x,,),
x,, isthe sample at the i-th tap of the r-th filter,

p,, is the variance of the estimation error of i-th optimal
weight at the r-th filter and

R is the variance of residual error.

Equation (3.1a) can be rewritten to the matrix form
W, (j +1) = We () +e(j). K- ()

(K is the column vector of %, ).

Thanks to the identity of (2.2a) and (3.1d) and
thanks to the similarity between (2.2b) and (3.1a), an
application of the block signal processing, described in II,
to SKF seems to be possible.

As previously, (3.1d) and (3.1a) are expressed at
time j-/ ‘

W, (j) = W, (j=1)+e(j - 1D).K-(j~1) (3.22)

M
e(j-1)=d(i-1)-2XI(-)W-(j-1) . ((3.2d)
Substituting (3.2a) into (3.1d), we obtain

o) = dl)) - X () W -1)- s - DEXE K (/1) =

rat

- )= ZXE(IW-1)- - )o0) ¢35
with s(f)= 3 X ()}K.(/-1) G.4)

ra)

Since (3.3) is totally identical with (2.4), (3.3) can be
directly rewritten to the form of (2.10)

RPN 7Y 2 v R M

3.5

where vectors A and W are given by (2.10).

Now, let us turn our attention to (3.1a). Substituting
(3.2a) into (3.1a) yields

W (i) = W= 1)+ () Ko () + - ) K- (1)
3.6)

Time dependence of the Kalman gain vector
disables application of the blocking procedure used in the
algorithm LMS. That is why the constant value of Kalman
gain is supposed during the block duration. This
assumption reduces computational requirements of SKF
from the "non-block" reason. Unfortunately, the described
simplification negatively influences adaptation parameters
of the algorithm (see computer simulations).

Components of the Kalman gain are shifted by the
same way as input samples in delay lines. With this idca in
mind, let us define

Kro(j)=[kra(j) ke2(i) - krwa(f)] -

Kr.l(j)':[kr.l(j) kr.s(j) x,.:v-l(j)] 3.7

Kea())=[kea() kea(s) - ken(d)] .

Equation (3.7) contains N+1 terms of the Kalman
gain vector. The "new" term £, , (/) can be computed c.g.
according to the relation

pry (j) Xr.N (j)

if:pu(j).xf;(j) +R

ral f=]

ke ( J) =

Second new term p,, is necessary for computing
k., This term is computed according relation (3.1c).Fof
more details see [9].

Equation (3.6) can be rewritten on the base of (3.7)
to the form

At SR b S

Pl o

(3.8)
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Rearranging (3.5) and (3.8)

() | [=s0) 1L 4()
(W, .0 ( Jj+ l):l

-Wr,l Jj+ l)

r=t

W, o (j - l)

leads to the additional reduction of arithmetic complexity.

'e(j—l)]_[ 1 o}{{d(j_n)]_i[m.(j). Woo(j-1)+ Woa(j-1)

Ara(N)|Wero(j = 1)+ Wea(j=1)

+

Arz(f) - Ani( j)]. W () - 1)]}

Ara(7)-Aro())} Wro (- 1)

=|: ]+[ Krr,x(j).[e(j—l)+e(j)]—[l(,,x(j)—K,_o(j)]r,e(j) ]
Wea(F=D)] 7| KL ) [e(- 1)+ e} [Ko2 () - Kea (] €G- D

(3.9a.b)

The term S(j) given by (3.4) is computed according to the relation

()= =2+ 3 o () 2 G) k()5 (=)= ea (= N 2= N) = oz (= N (=N =1) .

r=1

Generalization of the algorithm (3.9) to an arbitrary
block size is described in [9].

4. Computer simulations

Developed block algorithms have been tested by
computer simulations of the adaptive antenna array
consisting of three half-wavelength-spaced omni-
-directional elements. Desired signal (white, variance 0.01)
has come perpendicularly to the antenna aperture,
direction of the interference signal (white, variance 1) has
declined 45 degrees from the direction of the desired
signal.

At the first time, computational requirements of the
control algorithms have been measured by Turbo Profiler
(version 2.2, Borland International). The block length of
block algorithms has been set to L=2 because algorithms
of this minimal block . length exhibit the maximal
arithmetical complexity. Time required by processor for
performing the classical LMS algorithm is taken as 100%
(tab.1). Computational requirements of SKF are
approximately 3-5 times higher. For low number of taps,
computational requirements of BLMS are higher than
those of classical LMS. If number of taps is increased then
arithmetical complexity of BLMS significantly drops. This
effect is caused by the necessity of computing certain help
variables in BLMS - if the transversal filter consists of

.........................................................................................

high number of taps then these hclp variables are used
many times and relative time for their computing drops.
Computational requirements of BSKF are all the time
lower than SKF exhibits. For high number of taps,
arithmetical complexity of BSKF is twice higher in
comparison with the classical LMS.

Later, convergence properties of the control
algorithms_have been tested. Adaptation constant of the

LMS and the BLMS algorithms has becn set to £=3.107,
the variance of residual error R=10 and all the variances
of estimation errors p,=0.1 (r=1,2..M, i=0,1..N-1)
have been used for the SKF and the BSKF algorithms in
the following simulations.

Figure 3 shows the time courscs of enscmbly
averaged (20 ensembles) square error of LMS (dotted) and
SKF (solid) algorithms. Transversal filters have consisted
of 10 taps. Since there arc no significant differences
between time courses of LMS and SKF, block algorithms
are compared only with the LMS in further.

Figure 4 shows time courses of ensembly averaged
(20 ensembles) square error of LMS (dashed), BLMS
(dotted) and BSKF (solid). Transversal filters have again
consisted of 10 taps. The block length has been L=2.
Learning curves of LMS .and BLMS algorithms are
approximately the same. BSKF exhibits lower rate of
convergence and higher misadjustment than LMS family.

Table 1 Dependence of computational requirements of thecontrol algorithms on the number of taps of transversal filters. Time required by
the processor for performing the classical LMS algorithm is taken as 100%.

taps IMS SKF Block 1IMS Block SKF
3x 4 100 . 503 224 406
3 x 16 100 299 98 228
3 x 32 100 290 88 228
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Figure 5 shows time courses of ensembly averaged
(20 ensembles) square error of LMS (dashed), BLMS
(dotted) and BSKF (solid). Transversal filters have
consisted of 30 taps. The block length has been L=10. At
this situation, the learning curves of BLMS and BSKF
algorithms exhibit lower rate of convergence than the
classical LMS. Misadjustment of BSKF in on the level of
LMS algorithm whereas the misadjustment of BLMS is
higher.

5. Conclusion

Presented paper describes block algorithms for the
control of adaptive antennas based on the pilot signal
method.

Block Least Mean Squarc (BLMS) algorithm is
derived from the popular LMS algorithm. Computational
requirements of BLMS drops when number of taps of
transversal filters raiscs and when the block length grows.
If the block length is short then adaptation parameters of
BLMS are the same as the classical LMS exhibits. Incrcase
of the block length causes the growth of misadjustment and
reduction of the convergence rate of BLMS,

Block Simplified Kalman filter (BSKF) is bascd on
the SKF algorithm. Computational requirements of BSKF
decreases when block length grows and arc relatively
independent on the number of taps. Requirements of BSKF
are approximately twice higher than the classical LMS
exhibits. If block length raises then misadjusment of BSKF
converges to the misadjustment of LMS and convergence
rate of BSKF grows. :

Squared
Error
LMS cecveeeeeen
le+l T SKF _
le+0 as so 7S 100 125 150 175 200 225 250 iter.
le-1
}-E;: "3,:.:::':'; .P}:-. -&-",'l 0\ AW s ."_" m‘..{'”"' "
la-2 1 RUIER A H H 54 f | i Y i
‘ ’ E"E ot -‘. -" :: \ \ i : 4
d H | i !
! ] ' [
le~3 ~‘
Fig.3 Time courses of the LMS (dotted) and SKF (solid) algorithms. Transversal filters consist of 10 taps.
Squared
Error
BSKF 00T
+1 ]
1e BLMS oo
le+0 2s s0 75 100 125 150 175 200 223 250 iter.

le-1

le-2

le-3

Fig.4 Time courses of the LMS (dashed) BLMS (dotted) and BSKF (solid) algorithms. Block length L=2. Transversal filters consist of 10 taps.
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Sauared
Error
LMS  aeeeeo
le+l T BSKF
BLMS ...
1e+0 + 4 + + + oo + 4 + 4
25 50 75 100 125 150 175 200 225 250  iter.

le-1

le-2

ie-3

Fig.5 Time courses of the LMS (dashed) BLMS (dotted) and BSKF (solid) algorithms. Block length L=10. Transversal filters consist of 30 taps.

The BSKF algorithm is both numerically and
adaptively very stable and is independent on a priori
information about signals' statistics [6], [8]. On the
contrary, the BLMS algorithm requires the knowledge of
the trace of autocorrelation matrix of the tap-input vector

for the proper setting of the adaptation constant 4 [5], [8].

Taking all the above facts in mind, we can conclude
that the BSKF algorithm is suitable for the digital control
of adaptive antenna arrays when transversal filters have
great number of taps and when relatively high block length
of BSKF is used. Then the BSKF has twice higher
computational requirements than LMS, the same
misadjustment as LMS and lower rate of convergence than
LMS.
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