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In this paper, a brief discussion on description Y space of the DA i
of process by memorized data is given. The insight Z z=(xy)
into the problem can offer modified views on z {z}
optimal control, on data compression at z Z=X+Y

communication systems with respect to information
content of message, elc.

The idea of process description by memorized
data with different information content will be
presented here on the classical case study of
optimal control: the data based control algorithm
(data algorithm, DA) gathers data from the
controlled process and derives control signal
(control) from data accumulated in the data base.
The implementation of the DA on the ideal
computer which is not limited by its speed or
capacity of memory is expected for simplicity.
Accuracy of the data algorithm is then given by
a-priori knowledge of the task and by information
exchange between the controlled process and the
computer.
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1. Introduction
The call for the physical systems prediction/control

- has led to the models describing the particular system as

the unity, using the standard mathematical functions. Such
models will be mentioned here as the global models.

The global "models have been developed from
observations which had been, the exception proves the rule,
of local character. The sets of data describing systems in
discrete points of its state space will be introduced here as
the local models and their implementation on the computer
as the data models. The basic tasks of the data model and
the global model are identical: to reflect the causal
relations between state variables changes. Discussing the
control system the model has to procure the prediction of
the optimal control. In the classic procedure the a-priori
hypotheses dealing with

- physical interpretation of approximating function
- physical interpretation of quantification of measurement
errors
- physical interpretation of measurement errors distribution
- location of nonregular measured data
are used.

Being the above hypotheses in accordance with
reality, they carry information usable for interpretation of
the measurement, in the opposite case they represent an
interference. In addition to these physical conditions a
practical condition is present: - the reason for the global
model exists.
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The need of the explicit function y = y(x) is less
frequent then the claim for y, corresponding the given
x; in applications.

Local/data models will not be suitable for situations
where the functions, describing the system have the
physical basis. In the situations where the global models
are supported mostly by historical arguments local models
offer alternative procedures. Such cases are frequent in the
application area and it may be useful to go into the
problem.

2. Data Models

State space of the controlled process
X=8+V

where S is the state space of the controlled system
V is the state space of the external area

It is given by the set { x } = { s, v } of discrete
states. We will not index particular states x in the text,
the discussion will be led for any x € X.

To control the system the x, is measured in t, and
w, is predicted by the DA from memorized
z, .Subsequently the values of w,, q,, r, are measured and
the data y,= (w,, q,, I,, t,) are stored.

The interval of the state space sampling has to be
sufficiently small and frequency of measurement has to be
sufficient; as well as the stock of collected data. The set of
retained data is z, it presents the data description of the
process. The set z changes within the time. At the time t,
the DA can predict w, from the set z, (which does not
contain y,). Evidently, in practical application of the DA
the algorithm has to incorporate procedures of initial
assessment of the control w to the measured state x .
These procedures can be derived from a-priori familiarity
with the system, such procedures are always used for
checking the boundaries of control, for nonstandard control
actions, etc.

Let us assume an initial connection w to Xx.
Using a method of dynamic programming, algorithm
predicts the optimal trajectory from a measured state x to
the desired state and searches the time series of control,
which transfer the system to this final state. At t, it looks
for Yw, which transfers the system from x, to the
neighbouring state ’x on the optimal trajectory. Let us
start the discussion for the algorithm which computes the
accurate correction Dw, to the optimal w, after the local
control action has been done by predicted w,, Dw, € r,.
This demand is too strict for practice, where only the
knowledge of the sign of Dw, is often wanted; this may be
possibly also the easiest requirement of the correlation
between the theory of automatic control and the a-priori
knowledge of the physical essence of the controlled system.

The DA imitates the behaviour of a person, who for
his decisions consults the memorized experience.

An advantage of the DA is that the local model of
system can be often assumed to be in its local states x
linear, stationary and ergodic also at system whose global
model is nonlinear, nonstationary and nonergodic.
Disadvantage of the DA concept lies in large requirements
on technology, computer, for implementation of a DA. DA
can be regarded as an extreme type of classical control
algorithm, fuzzy algorithm or neuron net control
algorithm. Time series {“w } and corresponding time
series {‘q } correspond to different types of local models:

Stationary deterministic model. The ¥q, “w are
constant. It is possible to map the state space by standard
calculation, the map is time invariable. For the fixed
setpoint it is possible to assign the optimal control w to
any x, the optimal trajectories are constant. The feedback
serves for discretisation and disturbance compensation.

Nonstationary deterministic model. The Yq, Sw
are deterministic. It is possible to map the state space by
standard calculation, the map is time variable. It is
necessary to set the optimal trajectory at given state of the
system. The feedback serves for discretisation and
disturbance compensation. The optimal control of a system
with moving obstacle in the state space was published in [
41

Stationary stochastic model will be briefly
discussed further on. It enables profitable use of
accumulated data and suits for the DA. At stationary
stochastic process it is not possible to reduce data without
loss of information [1], [ 2 ]. In case of the lack of
a-priori knowledge of the controlled system, the discussion
of the control process can be led only on the basis of
measured data.

Nonstationary stochastic model requires both the
continuous data logging and the continuous computation of
control vector. Considering that the data model operates
with all procurable data it is theoretically possible to design
the DA which will work as well as any other one.

3. Validity of Accumulated Data

A control process described by a stationary
stochastic model is studied. A discussion will be restricted
on the prediction -w, of the optimal control w, from the
given w,; w,= w,+ Dw,. The probability density of w, at
t,> t, determines the chance of predicting an useful w,
from w,. For the continuous time and the Gaussian
random variable w(t) the best estimate w, of w, is

W1=Wk"%;-) (1)

with the best estimate o; of standard deviation o,
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0 ,(D,)) where
o1= A ) © (2) | Io=~ [;p(B)- log,p(B) 4p (7)
where Iy == [y p(Bler) - log,p(Blo) P (8)
. T where  p(B) is the a-priori probability density
f) = ITITZLT' % wit—1)-w(t) dt (3) function of P (before o is measured)

is the autocorrelation function of w(t), Dt=t-t,.

For Dt—» 0 the best estimate of control is' w,= w,, with
the best estimate of standard deviation =0 .

For Dt— o the best estimate of control is w,= w_,,, with
the best estimate of standard deviation o =0 .

The prediction of “w, from ™"w, using the
correlation function
. armn
g = limy | Yww(t-v)dt @
- :

Tow

where (s ,™s) and (s , "s) are couples of close
states is meaningful. Estimated values of w can be
weighted by its accuracy defined by standard deviation.
The estimate of optimal w from the low frequented state
can be found out in the area surrounding this state in the
state space.

Continue the discussion for the algorithm that can
compute only the medium value Dw, of the correction
Dw, after the local control action has been done by w, .
Dw, is given by Dw, and by the standard deviation o .
The best estimate of control w,is then given by ( 1) where

(w, + Dw,) is substituted for w, . The best standard
deviation estimate o, is given by

2
o1 = j/«» -(22)"+ ci-(’%‘,’)] (5)

Statistical prediction described has its limits in the
description of stochastic functions by second order
moments. For different premises the different attempts
would be effective. The analysis of these problems turns
de-facto into analysis of the a-priori knowledge of the
control process.

Equations ( 1) to ( 5) point to a limited use of both
the infinite speed and infinite memory capacity of an ideal
computer.

4. Information Provided by Measured
Data

The interpretation of Shannon's idea on a measure of the
information provided by an experiment has been given by
Lindley in the very early paper [ 3 ]. The amount of
information I provided by measured value o € A for
parameter P ep estimation has been defined by Lindley

=I- (6)

p(eIB ) is the (a-posteriori) conditional
probability function of B (aftero has
been measured)

In comparison with the problem solved in [ 3 ] the
control system is a dynamic one under the influence of
control and disturbances. At classical. control systems
where w(t) is derived from the equations describing
adaptive controller the discussion of the amount of
information provided by feedback leads to discussion of
a-priori and a-posteriori probability density function of
their parameters.

The DA optimizes w, locally at single points of x,
integrands in ( 7 ) and ( 8 ) contain probability density
function and conditional probability density function of
control w,. These in contradistinction to [ 3 ] are not
given and have to be approximated by a-priori and
a-posteriori statistical estimate. Then

DI, = L-I, (9)

where [y =— [, pwilz1) - logpwi|ziy) dw  (10)
I =~ fppnilz))-logpmlz) dw (1)

where p(w, 1z,,) is the a-priori probability density
function of w, estimate (before z is measured
at t,)
p(w, | z,) is the a-posteriori probability

density function of w, estimate (after z
has been measured at t)
The DA derives w, from the sct z, :
- procesS without control: Z=0 12)

- adaptive control without feedback: Z=V +Y (13)

- adaptive control: Z=X+Y (14)

- etc.

The computer capacity can be apportioned among
different tasks with respect to the information flow amount.
Algorithm simulates the behaviour of a living creature
being able to analyse unpredicted local changes of a very
large scene observed. There is neither a procedure to set
p(w |z), nor the procedure to set w from p(w | 2) in
(9) to ( 11). More, there is not inherent relation between
information amount and the quality of control. It streams
from the fact that Shannon's information is not connected

-with verity.
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5. Conclusion

The review of some problems associated with the
idea of algorithm operating with the ideal computer and
the real system has been given in this paper. At case study,
the close connection of the quality of control and the
a-priori knowledge was presented, ideal computer is not
sufficient condition for the optimal control.

At data systems, the data exchange between both
computer and system as well as computer and network can
be extremely reduced with respect to information
associated with the data. Ideal computer is an idea for the
future, there are not systems running on such a computer.
On the other hand, some slow systems of today are a very
good approximation of these ones.
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