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Abstract \

In this paper a new subset of the
time-invariant microstatistic filters so-called
microstatistic Volterra filters are proposed. This
class of nonlinear filters is based on the idea of
the conventional  microstatistic  filter
generalization by substituting Wiener filters
applied in the conventional microstatistic filter
structure by Volterra filters. The advantage of
the microstatistic Volterra filters in comparison
with the Wiener filters, Voliterra filters and
conventional microstatistic filters is the fact that
in the case of non-Gaussian signal processing
the microstatistic Volterra filters can outperform
Wiener filters, Volterra filters or conventional
microstatistic filters. The validity of this basic
property of the microstatistic Volterra filters is
verified by a number of computer experiments.
The disadvantage of the microstatistic Volterra
filters is their relatively high computational

Qmplexity. /
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1. Introduction

Threshold decomposition has shown to be a
powerful method for the analysis and design of a wide
variety of robust nonlinear filters. Traditionally,
nonlinear filters using threshold decomposition utilized
either ranked order, maxima and minima, or Boolean
functions of the thresholded samples inside an
observation window to make the estimate of a desired
signal. Lately, the class of microstatistic filters has
been introduced where the sum of all linear estimates
at the threshold level constitute the final output of the
filter [1,2]. This class of nonlinear filters we will call
conventional microstatistic filters (CMFs). There are

many advantages to the use of linear estimates rather
than Boolean functions at the threshold level. The most
significant of these is that linear system theory can be
used for the optimization and analysis of this class of
nonliriear filters. It was shown in [1] that the Wiener
filter solution is included in the class of the CMFs and,
in general, it is a suboptimal solution over the class of
possible filters.

Another quite different but also constructive and
versatile approach to nonlinear filtering is to utilize the
filter structure in the form of a truncated discrete
Volterra series [3]. In practice, the Volterra series can
be regarded as a Taylor series with memory. This class
of nonlinear estimators which is known as Volterra
filters (VFs) is also attractive since it can deal with a
general class of nonlinear systems while its output is
still linear with respect to the VF parameters.
Therefore like in the case of the CMF linear system
theory can be also used for the optimization and
analysis of the VFs. It follows directly from the VF
theory that the Wiener filters (WF) represent the
first-order VF. At the design of the CMF and VF the
mean-square error criterion is usually applied.

It follows from the facts presented above that
the CMF as well as the VF have a number of common
positive properties. For both classes of these nonlinear
filters it can be shown that in the case of non-Gaussian
signal processing or in the case of nonlinear system
modeling they can outperform the WF [1-3]. Based on
these facts we will introduce in our paper a new class
of the time-invariant nonlinear filters so-called
microstatistic Volterra filters (MVF).

In the case of the MVF the input signal is
decomposed by using M-level block threshold
decomposer into M signals. The i-th component of the
decomposed signal is fed into the i-th Volterra filter.
The output of the MVF is then represented by the sum
of the outputs of the all VF. The new proposed class of
microstatistic filters includes the positive features of
the CMF as well as the VF. The WF, VF and CMF
solution are included in the class of the MVFs and, in
general, they are suboptimal solutions over the class of
possible filters. The significant property of the MVF is
the fact that linear system theory like in the case of the
CMF and VF can be used for the optimization and
analysis of this class of nonlinear filters. It is also
expected that MVF will outperform the WF,VF and
CMV.

The remainder of this paper is organized as
follows. In the next section, a short description of the
new proposed class of the nonlinear filters is given.
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The design of the optimum time-invariant MVF by
using the mean-square error criterion is discussed in
the Section 3. Section 4 is intent on experimental

verification of the basic properties of the MVF. In this |

section a brief comparison of the basic properties of the
MVF, WF, VF and CMF is also given. Finally,
concluding remarks are made in Section 5.

2. Definition of Microstatistic
Volterra Filters

As it was outlined in the introduction of this
paper microstatistic Volterra filtering is based on the
idea of the CMF generalization which lays in the
substitution of the WFs applied in the CMF structure
by the VFs. A block scheme of the MVF obtained by
that way is given in the Fig.1 where x(n) and y(n) are
the input and output signal of the MVF, respectively. It
can be seen from this figure that the MVF consists of
an M-level block threshold decomposer of the -input
signal x(n) and M VFs. The number of the VFs
corresponds to the number of output signals of the
decomposer. The i-th output signal of the decomposer
is fed into the i-th VF (VF(Q,N)). The output of the
MVF y(n) is then given by the sum of a constant term
ho and the outputs of all VF. The constant term /¢ has
to be applied in the MVF structure in order to obtain
an unbiased MVF output. Henceforth, the individual
parts of the MVF will be described a bit more in detail.

2.1 Block Threshold Decomposition

The performance of the M-level decomposer of
the input signal of the filter can be described by the
expressions

Dix(n)] = [x.(®) x.1 () ... x1(m) x-1 (1) ... x-La (M x_ (M)}’ (1)

where D[.] represents operation of the decomposition
of the signal x(n) into a set of the M signals x,(n)
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Fig.1  Microstatistic Volterra fiiter.

where M = 2L . The connection between x(n) and x;(n)
is given by

x(n) = Di[x(n)] @

where Dg[.] denotes the decomposition operation for
the k-th level of the decomposer. In the field of the
microstatistic filter the most popular decomposition
method is - the well-known block threshold
decomposition (BTD).. In- the case of the BTD the
threshold sample xi(n) is uniquely determined from

x(n) by

/ 0 if  x(n) <lp
x;(n) =Dilx(M)]= — x(M)— L if Dy <x(n) <l
\' L=l if  Le<x(n)
3)

for x(n)2 0 and 1 Sk <L, and where /; =, The BTD
for negative values is given by

/ 0 if  x(n)>1l4n

xp(n) = Delx(m)= — x(n)—l_pr if Ly > x(n) 20
\ Le~lgn if lie>x(n)

@

for x(n)<0 and 1<k<L, and where /;=-oo.
Further, the threshold values are confined as

—o=] < <ljgi<h< <lp =0

(5)
2.2 Volterra Filters

From the Fig.] we can see that the signals
xi(n) (k=%£1, %2, .. L) obtained by the BTD
are fed into the VF,. The mathematical model of the

-VF, of the Q-th order memory of which is N samples

length (VF,(Q,N)) is given by

-1
R pjg;‘)_l - - (F)xe(n ~ pr)xi(n - p2).. xi(n—py)

©

where xi(n) and y,(n) are the input signal and the
output of the VF,, respectively. The right side of (6) is
called the truncated Volterra series. The sequence
Pipip,.,(K) 18 called the Volterra kernel of the j-th
order. :

Let us define the Volterta kernel coefficient
vector H; containing all coefficients of the VF, given by
(6) and the vector Xy(n) containing the input signal
samples x;(77) as well as their products used in (6).

Assume also that elements of H, and Xi(n) are

arranged in lexicografical ordering. Then by using the
vectors H; and X.(n) the expression (6) can be
rewritten in these forms
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ye(n) = HyXy(n) = X7 (mH . Q)]

It follows straight-lined from the expression (6) that
the first order VFs represent the well-known
nonrecursive WFs. Besides, it is evident from (6) or (7)
- that the output of the VF, is linear function with respect
to the elements of the Volterra kernels.

2.3 Microstatistic Volterra Filter
Output

The output of the MVF given in the Fig.1 is
represented by the sum of /o and the outputs of all VF,.
Then, the output of the MVF can be expressed as

Y0 = ho-+ £ atm) +y-4G1)] ®
Now, let us define the MVF coefficient vector H
containing constant term h, and all vectors H; and the

vector X(n) containing number 1 and all vectors X, (n)
as follows

H=[h, H] HI ,.H] HT, HT, H
®)

T T T T T

Xm)=[1 X[ X[).X7 XI.XI, XL
(10)

Then, by using the expressions (7)-(10) the output of
the MVF given in the Fig.1 can be expressed in the
form

y(m) = H'X(n) . 11

From this expression we can see that the output of the
MVF is still linear function with respect to the MVF
coefficients although the MVF is a nonlinear filter.
With regard to that fact the linear system theory can be
used for the optimization and analysis of the MVFs.
Besides, it follows from the above mentioned
considerations that the WF, VF as well as CMF are
specific subsets of the class of the MVF.

3. Optimum Microstatistic Volterra
Filter Design

Let us assume that the input signal of the MVF x(n)
and a desired signal d(n) are stationary random

processes. Now, we want to find the coefficients of an
optimum MVF which minimize the mean-squared
error (MSE) between desired signal d(n) and the filter
output y(n). Then, the optimum MVF coefficients are
obtained as the solution that minimizes the cost
function

MSE(H) = Ele?(m)] = E[(d(n) - y(m))*] 12

where. E[.] denotes the expectation operator.
Substituting (11) into (12) the MSE(H) can be
expressed in this form

MSE(H) = E{d*(n))-2HP + H'RH (13)

where

P=EldmX(m] R=EX'mXm] . (14)

In the expressions (14), P is the cross-correlation
vector composed of the samples of the higher order
cross-correlation functions of d(n) and x(») and R is
the symmetric nonnegative definite correlation matrix
consisting of the samples of the higher order
correlation functions of the threshold signals x.(n).
With regard to that facts it can be found that the
function MSE(H) given by (14) has the only one
minimum which has to satisfy the condition

RHopr =P (15)

where Hopr is the coefficient vector of the optimum
MVF. It follows from the last expression that the
design of the optimum MVF lays in the solution of the
linear algebraical equation system (15). Under
condition that the matrix R is a regular one the vector
Hopr can be computed by

Hopr=R'P . (16)

When the coefficient vector of the MVF equals its
optimum value Hopr, the MSE attains its minimum
value, MSE(Hopr), defined by

MSE(Mopr) = E[d*(n)] - H],,P =

= Eld*(n)] - H{prR™ Hopr amn

Threshold levels
L, 1, 1, 1, 1, 1, I,
the 1st experiment o 1.50 1.00 0.50 | -0.50 | -1.00 | -1.50 — 00
the 2nd experiment 00 1.50 100 | 050 | -0.50 | -1.00 | -1.50 | _ oo
the 3rd experiment 00 9.00 6.00 3.00 | -3.00 | -6.00 | -9.00 — 00

Table 1  Threshold levels used in the experiments
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4. Experimental Results

In order to visualize the differences in
performance for the MVF given in this paper and the
WF, VF and CMF, three computer experiments were
made. The desired signal and signal to be filtered were
generated as stationary processes. and as the
performance indices a signal to noise ratio (SNR) and
MSE were used. All statistical characteristics required
for the solution of the various filters were estimated
from the data on 1000 samples.

In all experiments the 8-level block threshold
decomposer was used. Its threshold levels were set
experimentaly by the such a way as to maximize the
SNR. The threshold levels used in our experiments
were the same for the CMF and MVF and they are
given in the Table 1. In the case of the VF and MVF
the second-order Volterra filters were used in all
experiments.
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Fig.2 The 1st experiment. Performance index SNR versus
filter memory.

; /

_ mve”

m Q

Z - v

z 6 // ﬁ/
e

", P——

(5]

0 .2 4 6 8 10
FILTER MEMORY [N]

Fig.4 The 2nd experiment. Performance index SNR versus

fitter memory.

In the first and second experiment the desired
signal consisted of the six sine waves with frequencies
0.113, 0.131, 0.156, 0.163, 0.188 and 0.213 of
sampling frequency. The amplitudes of the sine waves
were 1.0, 2.8, 0.7, 1.0, 0.95 and 1. The signal to be
filtered' was obtained by the same way as the desired
one but the amplitudes and frequencies of its sine
waves were corrupted by noise. In the first experiment
the SNR and MSE before filtering were -2.2dB and
10.25, respectively. In the case of the second
experiment it was 5dB and 1.92. The dependences of
the SNR and MSE on the filter memory for the WF,
VF, CMF and MVF are given in the Fig.2 - Fig.5.
From these figures we can see that the MVF can
outperform the other tested filters.

In the third experiment the desired signal d(n)
was generated by using a nonlinear Volterra-like MA
model.Then, the desired signal generation can be
described by
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Fig.3 The 1st experiment. Performance index MSE versus filter
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Fig.5 The 2nd experiment. Performance index MSE versus filter
memory.
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Fig.6. The 3rd experiment. Performance index SNR versus
filter memory.

4 s 4 -
don)= £ giwn-i)+ £ £ gawin-iwin-1
where w(n) is a white zero-mean and pseudorandom

signal with the gaussian distribution and the
coefficients g1, and g,, are defined as follows

[210,21,,812,815.81,)7 =[0.1,-1.5,0.5,0.2,0.3]7,

8200 820 8202 8203 82w
8210 &2n 8212 8215 821
820 8221 822 8213 21 [T
825 823 8232 8213 8244
820 820 82420 8243 82u
~1.6843 17896 1.4848 1.7578 -0.4474
-0.0528 0.3108 0.0968 -0.4900 0.1324
={ -0.4548 14167 1.1610 13724 -0.1093
—-1.4258 -0.3957 -2.4103 -0.6508 1.5108
0.7436 -2.1980 1.1449 1.4343 -1.1135

A filtered signal was obtained corrupting the desired
signal with additive Gaussian noise. The SNR and
MSE before filtering were -0.7dB and 59.20,
respectively. ’

The dependences of the choosen performance
indices on the filter memory for the WF, VF, CMF and
MVF are depicted on the Fig.6 and Fig.7. From these
figures we can see that also in this case the MVF
outperform the other tested filters.

5. Conclusion

In this paper a new subset of the microstatistic
filter so-called MVFs have been proposed. This new
class of nonlinear filters is based on the idea of the
CMF generalization by substituting WFs applied in the
CMF structure by the VFs. The advantage of the MVF
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Fig.7. The 3rd experiment. Performance index MSE versus
fitter memory.

in comparison with the WF, VF and CMF is the fact
that in the case of non-Gaussian signal processing the
MVF can outperform WF, VF or CMF. On the other
hand, the disadvantage of the MVFs is their
substantially higher computational complexity. With
regard to the two very important facts it can be said
that the MVF can be applied with advantage in this
field of signal estimation where the applications of the
WF, VF or CMV cannot provide the desired quality of
signal processing.
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