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Abstract

In this paper, an original rigorous analysis of re-
current analog neural networks, which are built from
opamp neurons, is presented. The analysis, which co-
mes from the approximate model of the operational
amplifier, reveals causes of possible non-stable states
and enables to determine convergence properties of
the network. Results of the analysis are discussed in
order to enable development of original robust and
Jast analog networks. In the analysis, the special at-
tention is turned to the examination of the influence of
real circuit elements and of the statistical parameters
of processed signals to the parameters of the network.
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1. Introduction

Artificial neural networks can be characterised as
parallel electronic systems, which exhibit the learning abi-
lity. Since classical computers work in the sequential way
and parallel multi-processor systems are rather expansive,
analog versions of neural networks seem to be rather at-
tractive to be used in some applications.

Dealing with the application of artificial neural
networks in radio electronics, many possibilities of their
use can be found. The networks can be explored for the
control of adaptive antennas, they can be applied to the
analog signal processing, to the real-time optimization etc.
Thanks to the relatively low price and high operation
speed of analog neural networks, they are used in the to-
day’s radio-electronic applications more and more fre-
quently.

Recurrent neural networks are characterised by the
presence of the feedback loops which lead signals from the

outputs of the network back into its inputs. These feedback
loops are the basis of the learning ability of this type of
networks on one hand but they can produce non-stable
states of networks on the other hand.

Because of the presence of many feedback loops in
the recurrent neural network and because of the use of
many operational amplifiers, real properties of which sig-
nificantly influence parameters of the network, the rigo-
rous analysis of analog recurrent neural networks is rather
complicated, and therefore, it has not appeared in the open
literature yet. On the other hand, this analysis is necessary
to be performed so as robust and fast neural networks can
be designed. Therefore, this work was done.

In the second section of the paper, the analog re-
current neural network with the Least Mean Square (LMS)
learning algorithm, which is sometimes called the Wang's
one, is reviewed. In the third section, the analysis of the
Wang’s network is performed. Obtained results are discus-
sed in the section four, and on the basis of this discussion,
modified versions of the Wang’s network, which exhibit
high robustness and high operational speed, are developed.

2. Wang’s neural network

The Wang’s neural network [1] was designed for the
solution of simultaneous set of real linear equations

Av=h, (1)

with the matrix and the column vector of coefficients A, b
respectively, and with the column vector of solutions v.

If the size of the matrix equation (1) is of the order N
then the Wang’s neural network consist of N identical pa-
rallely connected blocks - neurons (fig.1).

Operation of this network can be described by the
following way. In the first step, a random vector v' is put
into (1) instead of the searched solution. This substitution
produces the column vector of errors

e=b-Av. (2)

In the second step, the square of the error vector is

minimized by changing v' in the contra-direction of the
gradient grad,(e?)

av'/dt = nA"[b - Av'(1)] =0 + Wv', (3)

" where 6 = 7A™, W = -5ATA, 7>0 is the learning cons-

tant and T denotes the transpose.

The elements of the matrix W are introduced into the
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neural network in the form of resistors, which are given by
the relation

R, =R, o) (4)

with the feedback resistor Ry depicted in Fig. 1.

Elements of the column vector 0 are introduced into
the network by use of voltage sources Uy, and resistors Ry,
(Fig. 1), which are related by the expression

RU, [R.=6,. - (5)

Then, the neuron consists of the summer computing
one row of the right-hand side of (3), of the integrator pro-
ducing v;’, and of the inverter implementing negative ele-
ments of the matrix W (minus in W is substituted by mi-
nus in v;’).

Fig.1 First neuron of the two-dimensional Wang's network

During the transient state, the vector of the initial
random solutions v’ approaches the vector of real solutions
of (1) v. The time constant of this iteration process can be
described by the relation [8]

N (6)
T_ L
" 2RC,A,

It can be seen that the time constant can be influenced by
the learning constant 7, which is represented by value of
Ry, and by the integration constant R;C;. Moreover, the
settling time depends on eigen-values A of the matrix W.

Trying to obtain as high rate of convergence as pos-
sible can yield the instability if real operational amplifiers
are used as shown in the next section. Therefore, the stable
state with the maximal rate of convergence is useful to be
found.

3. Analysis of the Wang’s network

The instability of the Wang’s network is caused by
the high gain of its closed loops as it will be shown later. If
the 2-dimensional network is assumed, then three types of
closed loops can be found in the system: the first one is in-
side the model of a real opamp (recursive definition of /3),
the second one is around the opamp using a feedback com-
ponent (Fig. 1) and the third one is around the neuron.
The gain of the last two closed loop is influenced by ele-.
ments of the matrix W (represented by resistors R;;) and
by the adaptive parameters of the network (time constants
R,C; and the learning constant 7). Therefore, all these pa-

rameters can influence stability of the system. And the
question is how they do it.

Answering the question, the ideal opamps in Fig. 1
are replaced by the model of a real opamp [6], which is de-
picted in Fig. 2.
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Fig.2 Model of a real operational amplifier

‘The considered opamp model can be described by the
following equations [6]:

I, =AU, (7)
I, = BU,, (8)
U, =Hl,, (9)
I, =CI g+ DI p — DI ,, + El ,, — EI (10)

where A to H are constants and meaning of the rest of
symbols can be seen in Fig. 2.

The exact analysis of the two-dimensional Wang’s
neural network with ideal opamps replaced by their mo-
dels (Fig. 2) is rather difficult because of the presence of
non-linear elements in the circuit (diodes D, to D).

Dealing with the diodes in the supplying sub-circuit
(D5 and D,), they does not influence both the stability and
the convergence properties of the circuit. This is given by
the fact that the current source /, and the whole supplying
part of the circuit can be neglected because they serve for
the non-linear limitation of the output voltage if it appro-
aches the supply voltage. Consequently, if small output
voltage is assumed then currents /p; and Ip, need not to be
considered in (10).

Unfortunately, diodes D; and D, cannot be neglected
even in the closed state which is caused by the role of cur-
rents Jpr and Ip; in the circuit (currents Jp; and /p, signi-
ficantly influences the current /5 which plays the cardinal
role in the stability of the opamp). Therefore, to enable the
convergence analysis of the circuit, the diodes D, and D,
are approximated by the linear characteristic in the open
state and by an infinite resistance in the closed one.

The possible instability of the circuit is modelled by
the current source /5, which is recursively defined: a part
of /5 consists of the current /g (10) flowing through the re-
sistor Ry, and regressively, Ip is dependent on the current
source /5 (see Fig. 2). Moreover, there is another recursion
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in the circuit: a part of the current /; consists of the current
I3 (see Fig. 2), and regressively, /i influences the voltage
Uy (9). If one of the diodes D; or D, in Fig. 2 becomes
opened then the positive feedback appears in the circuit
which can be described by the relation

1, (p) +[In (p)H - ZSD/P] [I/Rdn I/Rm] (11)

B = X () + Y @) [VRun - VRar]

where

1(p) = =CI, p’é}“Rf foR) - ;1 My (12)
Iy(p)=- Rb[;’é‘f:;:f:ii') i -I,N(p)’ | (13)
P =C [pC[:?RR+i Y+l (1)
¥(p) = 1+ pRCHR_ HD (15)

Ry [pC/(R, +R )+1]

Furthet, Rzy and R, denote the resistance of diodes D,
and D,, respectively, R.. and R, are given by the equati-
ons (19) and (20), respectively, C and D are constants ac-
ting in the equations (7) to (10), A denotes the constant
from (9), p = 2af, and the rest of symbols is explained in
Fig. 2.

For simplicity, equation (11) is rewritten to the form

Li(p)=-1,K(p)-1,(p), (16)

with

L(p) = (25D/ P) [1/ R~V Rm] (17)
1+ X(p) + Y(D)[ VR4, = VR, ]

Kip)= M(p)+ N(D)H[R,, - YR,,] - (18)

1+ X(p) + ¥(P) [VRuy - YRus)

Relation (11) expresses description of the current /; in the
Laplace domain in the situation, when one of diodes D, or
D, is opened (one of resistances R4 or Ryy; is small), and
the output voltage U,,, diverges.

Further, resistors R, and Ry, playing role in (14) can be
expressed as

RR,(R, +R)+R,R, (R, +R,, +R)

(19)

“ " RR,+R)+ R, +RYR, +Ry +R)
g+ Bt ROR 20
Ra =Rt R TR +R, (20)

In the above equations, the resistors Ry, R; and Ry are de-
picted in Fig.1 and the resistors R, and R; are depicted in
Fig. 2.

In the following step, the above described model of
the operational amplifier is substituted into the Wang’s
neural network. To simplify this task as much as possible,
only one neuron with the feedback from its output to the
input resistor R,; is assumed.

Moreover, in this stage of the analysis, a model of the
real operational amplifier is considered being in the sum-
ming amplifier only. Dealing with the integrating ampli-
fier and the inverting one, the ideal opamps are considered
there.. Later, a way of extension of the presented analysis
to the case when all the three opamps in the neuron are
considered to be real, will be shown in this paper.

All the above described simplifications are necessary
to be done because the analysis of the non-simplified cir-
cuit leads to high order equations in Laplace domain, solu-
tion of which is very difficult.

In the above described circuit, there are two feed-
backs from the point of view of voltages on the input of the
opamp U,, and on its output U, The first feedback is re-
presented by the feedback resistor Ry in the summing amp-
lifier, and the second one, by the connection between the
output of the neuron and the input resistor Ry, (see Fig.1).

In the first step, the first type of the feedback is hand-
led. For this purpose, the input part of the circuit (the dif-
ferential amplifier in the opamp) can be described in a rat-
her simple way because both the capacitor C; and the cur-
rent source Iz can be neglected (/7 is the constant current
which does not influence dynamics of the network, and
therefore, is does not influence the stability of the system)
and the JFETSs can be assumed to work in the linear regi-
me (small signals are assumed to be handled). Then, the
transfer function of the input part (relation between the in-
put voltage and the current source /;) can be expressed as

_ARySU, | (21)
1T 2SR p+1

where A4 is the parameter acting in (7), S is the gain of the
JFET’s transfer characteristics and Ry is depicted in Fig.2.

The output voltage U, representing the error signal
in the neuron consists of components U,,; and U,,, which
can be expressed as

_PRCR, R, +R, AR,SU,

U, = (22)
'~ "pRC,+1 R, pRC,+1

with (23)

R - R,(R,+R,+R,) RR,
e R +R)R, +R, +R)+R (R, +R) R, +R, +R,
=RuRe (24)
° R, +R,

and
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= [ RC kP (p)] )

Uo.n =—fy

with

R,RR,

h=r& YR, +R)+R(R, +R)

(26)

Here, 1, is given by (17), X is given by (18), R;, Rrand Ry,
are depicted in Fig. 1, Ry, Ry, R,, C,, C, and Ry are depic-
ted in Fig. 2, 4 is constant acting in (7) and S is the gain
of the JFET s transfer characteristics.

Then, the relation between the input voltage of the
operational amplifier U;, and the output one U,, can be
expressed as

u, = Lubet Uk (27)
R, +R,

Substituting (27) into (22) and (25) yields

- U.Z(p)ARySR,

" (2pR,C,+WR,+Z(p)AR,SR,
LPRR|(R+R)/R 2R\ C, 41 (2%)
(PR, C,+DR,+Z(p) AR, SR,
where
RC,R
2(p) = R K(p) + PRa&Re. . (29)

PRC, +

In order to include the second type of the feedback into the
analysis, the voltage U, can be described by the relation

U¢ =( Udc ; Uoul )R‘
PR. PR.RC,

with Uy, Ru ,R; and C; being depicted in Fig. 1.

(30)

Then, the voltage at the output of the summing opamp U,,,
can be expressed as

__RRC, (31)
out RGR"‘
[UiRiZ(p) AR SR, +pU.(DR,R,]
[P@PRACo+DR,R.C,+Z(p) AR, S(PR (R C,+R )]

where

U,=L(P)R.[(R,+R,) [R.J@PR,C, 4D (32)

Finally, eqn. (31) can be rewritten into the form
-RC,(ap*+fp+7) (33)

ous

RC,(p*+®@")+(R.C,e+p)p* +(RC,0+P) p+x

with ¢, B, ¥ denoting coefficients, which can be evaluated
according to [10] and which are not important from the

point of view of the stability of the system, and with J, g
@, 0, ¢, 7 given by the relations (36) to (40).

Examining the relation (33), several possible forms
of the time course of the error signal U, can be found.

The first type of the time course of the error signal
exhibits slow convergence without depressed oscillations
which is caused by real poles in the denominator of (33).

The second type of the time course of the error signal
is convergent with depressed oscillations which is caused
by two complex conjugated poles or two pairs of complex
conjugated poles in the denominator of (33).

The worst type of the time course of the error signal
occurs when diodes become opened and the output voltage
of the opamp diverges. In the Laplace domain, one negati-
ve pole is obtained in the denominator of (33).

The fourth type of the time course of the error signal
corresponds with another undesired state of the circuit: the
output signal has the form of sinusoidal divergent signal
described by the relation

A B

_ . (34)
(p+a) +a’

out pz + wz
with constants 4 and B being coefficients, which can be
evaluated according to [10] and which are not important
from the point of view of the stability of the system, with a
describing decrease of oscillations, and with @ and @; be-
ing frequencies of oscillations.

Comparing relations (33) and (34) for @; = 0, a con-
dition for constant oscillations can be found:
RC. = P=9/0 (35)
" (82/4) +(0/8) -

If the relation (34) is transformed into the time domain
then the obtained expression represents the difference bet-
ween fixed oscillations and depressed ones which corres-
ponds with rising oscillations as the result. These rising
oscillations become fixed after certain time, which is given
by a parameter a in the relation (34).

Dealing with the relation (35), it shows that the abo-
ve described states occur in dependence on a gain of the
closed loop, i.e. in dependence on C;, R; and Ry, (see rela-
tions (36) to (42)). The exact analysis of this dependence is
rather difficult because it produces high-order equations.
That is why the non-linear sub-circuit containing diodes
Dy and D, (see Fig.2) was neglected in the step from (34)
to (35) in order to simplify the analysis (currents /p; and
Ip> in (10) were neglected). In such a case, the divergence
of U, can not occur on one hand, but the state described
by eqn. (34) (rising oscillations) may arise on the other
hand. Then, the symbols in (33) are of the form

_ Ry R AR,SR,R,C

(36
T(p) )
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4= R,AR,SR,C,R,[R R, + RC(R, +R, +R )] (37)
) T(p)

_ RAR,SRC, {C\R {RCRR+R,R R, (+O+R 1}
g T(p) ’

&= [sz + Ra]R|RnC1 .
T(p) .
{R2C,Ry +[2C,Ry +RC,|[R.(A+C)+ R ]} +

RR, RAR,SR, - (39)
T(p)
{2c,R, +RC, +C[R,A+O)+R]}

,_ RAR,SRR\C, [RR, + RCR +R)] (40)
T(p)
(Rg +RIRR, {2C,R, +RC, +C[R 1+ C)+ R ]}
. .
T(p)
o AR SRR R,C + R Ry (Rpy +R,) (41)
I(p) ’

T(p) = (R + RORRCR2CRy (R, (1+C) + R). (42)

Validity of results of the above described analysis of one
neuron can be generalised for a neural network consisting
of an arbitrary number of neurons [10]: both the error sig-
nal U, and all the other variables acting in final expres-
sions have to be considered as vector and matrix variables.
Then, the relation (30) is of the form

T
U_=(A "Jlﬂ), (43)
P PRC,

where A and b are matrix and vector of input signals from
(1) and W = nATA

Substituting (43) into (27) yields the relation for the

vector of error signals U,,, and new form of the relation

(33) is obtained, which depends now on eigenvalues of the
matrix of input signals W. The matrix of eigenvalues of W
can be obtained by application of a matrix transformation
described in [8].

In the following section, possible electronic imple-

- mentations of the results of the above described analysis
are discussed in order to obtain as robust and as fast as.

possible modified versions of the classical Wang’s neural
network.

4. Electronic realisation of results of
the analysis

As the most important result of described analysis,
mathematical relations for the dependence of the stability
and for the convergence rate of the network on the ratio of
eigenvalues of matrix W (which is represented by resistors
Ry) can be considered. Of course, the discussion requires
taking the two-dimensional Wang’s network in mind at
least, which is described by the fifth-order polynomial in
the denominator of (33). Then, the following conclusion
can be done: If the eigenvalue ratio of W equals one then
gains of closed loops of each neuron are approximately the
same. On the other hand, if the eigenvalue ratio of W sig-
nificantly differs from one, and at the same time, circuit
parameters influencing closed loops gains are the same in
all neurons case then there is one neuron with small gain
(corresponding with the small eigenvalue) on the other one
with high gain (corresponding with high eigenvalue).
Then, the maximal gain, which can be set in order to keep
the stability of the whole network, has to correspond with
a maximal possible gain of the high-gain neuron. I.e. para-
meters influencing closed loops gains must be set proporti-
onally to this maximal gain, and the ratios of both gains is
kept. Unfortunately, the neuron with small gain increases
the convergence time. The described property is undesired
in applications, where the high convergence rate is
required.

To overcome the described difficulty, several soluti-
ons have been so far proposed.

In [6], an approach of removing the dependence of
the system on eigenvalues of W was published. But it ca-
me from the mathematical description based on ideal cir-
cuit components. This approach exhibited the independen-
ce of the convergence rate with respect to the ratio of
eigenvalues of W. Unfortunately, computer simulations
with real opamps showed that this approach fails for the
eigenvalue ratios significantly differing from one. Incre-
asing the eigenvalue ratio, closed-loop gain were necessary
to be increased also (towards the very large values). In the
opposite case, the network produced a big misadjustment
due to the inaccurate computation of weights and conver-
gence time is long.

Another approach for obtaining the convergence time
independent on the eigenvalue ratio was obtained by the
use of the Kalman filter which is independent on the ei-
genvalue ratio by its nature (of course, ideal opamps must
be considered). Unfortunately, the obtained network is rat-
her complicated. Of course, there are some possibilities of
simplifying the structure {2}, but the price, which must be
paid for this, is given by higher dependence of the conver-
gence rate on the eigenvalue ratio. In real conditions,
problems of the both pure and simplified Kalman’s
network are similar to those of Wang’s one, but reached
convergence rate is much higher.
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Another possible approach consists in sefting time
constants, or other parameters representing the closed-loop
gain, separately for each neuron. The time constants are
set on the basis of the statistical parameters of input sig-
nals so that the neuron with the highest corresponding
eigenvalue can be in a stable state and the neuron with the
smallest corresponding eigenvalue cannot cause the long
convergence time. By this way, the dependence of the cir-
cuit on the eigenvalue ratio can be decreased. However,
the setting of time constants cannot represent a linear de-
pendence on eigenvalues in real conditions [9] because of
possible appearance of an unstable state. Further, it is
technically impossible to compute eigenvalues of the corre-
lation matrix in order to set parameters of the circuit in
real time. Therefore, an approximate solution of the prob-
lem consisting in substituting eigenvalues by numbers in
the diagonal of W was developed [9], but unfortunately,
the high convergence rate was accompanied by possible
unstable states. Therefore, an additional circuit {4], which
was based on the circuit, which does not fulfil the condi-
tion (34) and which consequently eliminated unstable sta-
tes, had to be added to the system.

Dealing with the verification of all the circuits, des-
cribed in this section, they were simulated in PSPICE 5.1
with good results.

5. Conclusion

The paper presents an original analysis of the
Wang’s network with neurons consisting of models of real
operational amplifiers. Moreover, the paper shows both the
theoretical basis and the implementation possibilities for
the development of improvement versions of the network,
which excel in the high convergence rate and in good sta-
bility.

Because of the enormous complexity of the analysis,
the analysed circuit was originally simplified to obtain un-
derstandable results on one hand and to preserve conver-
gence propertics of the network in the mathematical des-
cription on the other hand.

In the first part, the dependence of the stability and of
the convergence time of the network on the parameters
was proven. Further, previously published improvements
were reviewed (Kalman’s network, networks of Klemes
and Compton), their agreement with the presented theory
was discussed and the possible way of the design of robust
and fast networks was proposed. The proposed design pro-
cedure is based on the control of a separate setting of clo-
sed-loop gains of single neurons. The proposed design pro-
cedure is similar to the control of the adaptation step in the
digital Variable Step-Size LMS algorithm.
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