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Abstract

The presented submission describes how genetic
algorithms can be applied to the optimization and
design of wire antennas. The proposed optimization
method is easily programmable and well understand-
able on one hand, but relatively slowly converging and
depending on the parameters of the genetic algorithms
on the other hand. The disadvantages of the method
are deeply discussed and their elimination is discussed
in the paper.
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1. Introduction

In the today’s society, communication systems play
more and more an important role. Some of those systems,
e.g. mobile telephone or radio broadcasting devices, are
based on the propagation of electromagnetic waves in the
free space (radio communication systems). And antennas
are one of the most important parts in those systems. The-
refore, an extreme care has to be taken for them.

There are many types of antennas which are used in
radio communications. Among them, wire antennas (an-
tennas which consist of elementary linear radiators) play an
important role: they can be used in the form of monopoles
as antennas for mobile telephones, they can serve in the
form of dipoles as primary radiators in reflector antennas
etc. Therefore, the analysis and the design of wire antennas

are of extreme importance in the today’s applications which
corresponds with an attention paid to these topics in the
literature [1] - [S].

Dealing with the analysis of wire antennas, there is no
analytical solution for the problem, and therefore, nu-
merical methods have to be explored [6].

Dealing with the optimization and design of wire an-
tennas, classical optimization techniques fail here because
of the unknown explicit mathematical model of antennas on
one hand and because of the optimization surface exhibiting
many local minims on the other hand. Therefore; the use of
non-traditional optimization techniques based on artificial
neural networks [7] and genetic algorithms {8] was
proposed in the literature.

In the presented paper, problems of the design of wire
antennas are discussed on a folded dipole representing wire
antennas. Section Il describes a simple and computationally
efficient numerical model of the folded dipole based on the
combination of the method of moments [9] and the Howe's
method [10]. In section III, an application of the genetic
algorithm to the optimization of the folded dipole is
described. In section. IV, the final algorithm is discussed,
and in V, numerical examples are given

2. Numerical model of folded dipole

In the presented paper, the folded dipole (Fig. 1) is
assumed to consist of wires with the radius a which is very
small with respect to the wavelength 4 and with respect to
the length of the dipole /. The distance between horizontal
wire of the dipole d is small with respect to / which condi-
tions the proper work of the antenna.

As shown in [6], the folded dipole is flown by a sym-
metric current /; and by an asymmetric one 7, (Fig. ).
Whereas the asymmetric current is dominant in the radia-
tion of the antenna, the symmetric current influences the
input impedance of the folded dipole only (radiation of
nearly placed currents with opposite orientation mutually
eliminates).

The contribution of the symmetric current to the input
impedance of the folded dipole is computed using the
Howe’s method [10]. The characteristic impedance of one
arm of the folded dipole (which is formed by the transmis-

sion line with the short end) is given by the formula {10}

Z,=1201n(d/a) (N
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and the input impedance of one arm can be evaluated then
using [10]

Z,=j Z, tan(ki/2) (2)

where k is wavenumber and the rest of symbols represents
sizes of the antenna depicted in Fig. 1.
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Fig. 1 Folded dipole and its supplying causing the
presence of symmetric and asymmetric
currents

The contribution of the asymmetric current to the in-
put impedance of the folded dipole is computed using the
method of moments [9] applied to the symmetric dipole
with the equivalent radius [10]

a,,=yJad (3)

Electric intensity of the radiated electromagnetic wave
in the point r is computed on the basis of the vectorial
potential A(r) and the scalar one ¢(r) [6]

E()=joAl)-ve) (4
where @ denotes angular frequency.

The vectorial potential in r is computed integrating
contributions of the current density J on the antenna surface
S[6]

e»ij(r.r')

—  _d 5
4z R(r,r') S )

A=y [
§

(R denotes the distance between the source of the potential
r’ and between the point in which the potential is compu-
ted) whereas the scalar potential is obtained integrating
contributions of the charge density on the antenna [6]

1 e JkR(r r)

#(r)=— sj a(r')m ds (6)

£

(& denotes permittivity of the antenna surroundings). Both

the current density and the charge density are bounded
together by the theorem of continuity [6]
o =—Tl v-J (7)
Jo
Moreover, the tangential component of the electric intensity
vector (consists of the intensity of the incident wave E' and
of the scattered one E') on the perfectly conducting surface
of the antenna is enforced to be zero [6]

nxE’ =—nxE (8)

Assuming that both the current density and the charge
density are placed into the axes of antenna wires [9],
approximating the current distribution by a piece-wise
constant function and exploring the method of weighted
residua [9] with Dirac pulses as weighting function yields
the contribution of asymmetric currents to the input impe-
dance of the folded dipole Z,;.

Afterwards, bringing the contributions of symmetric
and asymmetric currents to the input impedance together
gives us the input admittance of the folded dipole [6]

Yo=Y, +3Y, (9)

By the above described way, a relatively accurate and
computationally efficient numerical model of the folded
dipole was developed. This numerical model is used in the
following chapter for the genetic optimization of the folded
dipole.

3. Genetic optimization

Genetic optimization algorithms are inspired by the
biological principle of natural selection. Therefore, every
folded dipole is called an individual. All the parameters of
the individual, which are changed during the optimization
process, are encapsulated in a chromosome. The single pa-
rameter is called a gene. In a computer algorithm, chro-
mosomes can be understood as arrays of genes. Further, a
gene is a binary encoding of a parameter [11] - [17].

At first, a number of individuals, representing the op-
timised antenna, is created. Properties of those individuals
are randomly chosen from a certain, previously defined in-
terval. Then, the individuals are sorted with respect to their
ability to meet requirements to them, which are described
by the cost function. In the next step, the breeding of new
generation is performed combining chromosomes of
individuals, and moreover, some mutation (random change
of a few bits in the gene) can be done. Quality of new
generation is then again tested by evaluating the cost
function. If the cost function produces small error for the
new generation then the algorithm stops. Otherwise, new
breeding is performed [11] - [17].
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Concentrating on the folded dipole from Fig. 1, every
individual is described by a chromosome consisting of two
genes - two parameters which can- be changed during the
optimisation process. Therefore, the gene I can correspond
with the horizontal size of the dipole / and the gene 2 can
represent the vertical size of the dipole d. In our optimiza-
tion, the diameter of the wire is assumed being constant.

gene 1 gene 2
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Fig. 2 Structure of chromosome

In the genetic algorithms, chromosomes represent
every individual. In order to evaluate the quality of the
individual, each chromosome is associated with a cost
function, assigning a relative merit to that chromosome.
This means that after the random generation of the chro-
mosomes, cost functions are evaluated for each chromo-
some and the corresponding individuals are ranked from the
most-fit to the least-fit, according to their respective cost
functions. Unacceptable individuals are discarded, leaving
a superior species-subset to the original list.

In the next step, the parents, which may create off-
spring, are chosen. In the presented algorithm, a very
simple function creating offspring is used: two randomly
chosen parents are compared and the best one of them is
used. This is repeated until the number of parents is the
same as the number of individuals in the present genera-
tion. In this way, a matrix with a relatively high chance of
the presence of the best parents.is developed.
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Fig. 3 Cross over

All the parents produce two new offspring by swap-
ping some of their genetic material (Fig 3). The point of the
crossover is randomly chosen by the algorithm and it
defines where the chromosome is broken.
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Fig. 4 Mutation

The both parts of the chromosome are used to combi-
ne two new individuals, which both possess a part of the

genetic information from both parents. By this way of bre-
eding, the number of individuals is remained constant du-
ring all the different generations. :

In the next section, the problems, which might appear
in implementation of genetic algorithms, are described and
their possible solution is suggested.

4. Problems of genetic algorithms

One of the common problems occurs when the algo-
rithm chooses often the same parents in the auxiliary mat-
rix. In this case, the parents are possible to be the same, and
thus, the children will be the exact copies of their parents
(no offspring - with different genetic - information is
obtained). - '

The problem can be solved by introducing a mutation
into the algorithm which means that random changes are
done in the binary code of the chromosome. In the example
in Fig. 4, the mutation was done by changing the third bit of
the first gene. Most of the papers about the use of genetic
algorithms mention a value for the chance that a bit changes
due to mutation between 1 and 10 percent [13], [15].

After the breeding and the mutation, cost functions are
again evaluated for the offspring and the mutated chro-
mosome, and the process is repeated.

Next of the most common problems is that there is no
rule for electing such a probability of the mutation which is
the best for obtaining the best result as fast as possible.

If the probability of the mutation is very high (about
10 percent), then the algorithm risks to destroy a good ob-
tained individual by destroying his genetic information. On
the other hand, if the probability of mutation is very small
(1 percent or less), the algorithm ~exhibits very fast
convergence to some solution, but the result will only im-
prove after a very long time.

The problem of the number of mutations can be sol-
ved. by increasing the chance of mutation in the case of
significant number of individuals in the generation ( one
half of the generation, e.g.) being the same. Since this
problem appears after a larger amount of generations, there
is no need to reduce again the number of mutations.

If the number of mutations is quite big, and therefore,
the good results of the previous generations are deleted, it
might be a good idea to keep the previous two generations
in some auxiliary matrix, and if the algorithm is found out
to produce only bad results, the better result of these saved
two generations can be called back.

The third problem is that convergence of the algo-
rithm to the global minimum is dominantly influenced by
the randomly chosen first generation and by the randomly
chosen breeding in every generation. Therefore, the algo-
rithm should be stopped between every generation and all
the individuals of the present generation and of the previous
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one should be checked. Is this way, this population can
decided whether it has some good ,.future* or whether the
algorithm should be stopped and started all over again. If
more or less good solution is at the disposal, then the
chance of mutation should be increased to obtain faster
some result (either better or worse, you are not sure).

In most of the cases where genetic algorithms are
used, there is a problem with long computation time: the
model should be evaluated in every generation as many ti-
mes as there are individuals. Sometimes, the computation
of a generation takes more than 30 minutes (if the number
of individuals is very large and the model is sophisticated),
and this makes it impossible to check every generation ma-
nually.

The final problem is that the user of the algorithm
should be experienced, because otherwise, he cannot un-
derstand the meaning of the data totally and is not able to
take decision how to influence the parameters of the pro-
cess which is going on. Therefore, the users are encouraged
to hardly study the nature of optimized systems.

Another possibility is to make the genetic algorithm
more intelligent, and make it possible to anticipate itself on
the progress of the process.

5. Examples

At this moment, the attention is turned to the numeri-
cal examples of the work of the genetic optimization of the
folded dipole. The task, which the genetic algorithm was

asked to solve, was finding the optimal length of the folded |

dipole / and the optimal distance between horizontal wires
of the dipole d so that the input impedance of the folded
dipole could be Z, 300 Q on the frequency
/=717 MHz. The radius of all the antenna wires was fixed
to a=2.5 mm.

Observing Fig. 5 and Fig. 6, which show the learning
curves of the same algorithm running twice with the diffe-
rent chance of mutation and different number of individu-
als, the results of the algorithm are obvious to work in an
unique way in each case.

In Fig. 5, we see that after the 6™ generation no other
results are given due to the fact that most of the parents
have the same chromosome. Only in the 15™ generation,
there is a very big progression due to the mutation. Optimal
sizes of the folded dipole were / = 1.9490 m and
d=0.1473 m.

In fig. 6, there is shown the danger of mutation: the
rather small squared error (36 Q) of the generation one is
immediately destroyed by mutation and even -after 36 ge-
nerations, the result isn’t better then 64 Q. Therefore, we
can conclude that mutations are useful, but have to be
handled with care.

Dealing with the number of individuals in one gene-
ration, higher number of individuals decreases number of
generations, which are necessary to obtain optimal results,
but the computational requirements of the algorithm are
increased.

Learning curve of the genetic optimization
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Fig. 5 Learning curve of a genetic algorithm, with 18

individuals, 15 generations, and 2% chance of
mutation.
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Fig.6 Learning curve of a genetic algorithm, with 12
individuals, 36 generations, and 5% chance of
mutation.

6. Conclusions

The presented paper is concerned in the design of wire
antennas by genetic algorithms.

In the paper, the folded dipole was chosen to represent
wire antennas and its numerical model was developed. The
model was based on the combination of the method of
moments and Howe’s method.

Dealing with the optimization technique, genetic al-
gorithms were found to be suitable for the purpose of the
optimization of wire antennas because they are very general
(and therefore, they can serve for the optimization of an
arbitrary wire antenna in our case), they are very under-
standable and easily programmable.

Dealing with the properties of genetic algorithms, low
convergence rate is their main, and at the same time only,
disadvantage. On the other hand, the genetic optimization
belongs to the global methods, and therefore, it does not
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have so serious problems with local minima of the cost
function as the classical methods.
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