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Abstract

The elementary canonical state models of the third-
order autonomous dynamical systems, topologically
conjugate to Chua’s circuit family, are generalized for
any continuous and odd symmetrical piecewise-linear
(PWL) feedback function. Their state equations are in
accordance with the basic form of the Lur’e systems
and the corresponding circuit model contains the mul-
tiple PWL feedback. The general results are applied
Jor the simplest three-region case defined by three sets
of the equivalent eigenvalue parameters. The applica-
tion of these results is demonstrated on the double-
scroll chaotic attractor with global attracting proper-.
ties. ‘As an example its utilization in synchronized
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1. Introduction

The recently developed elementary canonical state
models of the third order autonomous dynamical systems
[1] can easily be. generalized for any continuous and odd
symmetrical piecewise-linear (PWL) feedback functxon {21.
Such a general PWL function partitions ®° by several
pairs of parallel planes into several symmetrical regions
having different associated characteristic polynomials de-
termined by the so called equivalent eigenvalue parameters
[3]. If this model is to be elementary canonical, i.e. with
simple relations between its state equation parameters and
the equivalent eigenvalue parameters of the individual re-
gions, only the first form described in [1] can be used. In
this case its general matrix state equation

x=Ax +bh(w'x) )

Qhaosis‘shawn., et . -}

is extended to the form

k~1
i=Ax+).bh,(W'x) @

i=1

where A € R, b e %%, we R It corresbbnds to the
basic form of the Lur’e systems [4] where smple memo-
ryless partial PWL functions

represent elementary nonlinearities while all lmear relations
are included into state matrix A .

For an illustration the simplest case with k=3 (i=1,2)
is considered. Then the PWL feedback function partitions
%° by two pairs of parallel planes, i.e.

Uy: Wix=E,, Uy wix=-E_,
and U+2: wa = E2 ’
into the following regions:

Cow Ty =
Uy w x——Ez,

(2) one central inner region Dy (-E; s W'x<E,)
(®) two symmetncal inner reglons ( Ez >E,>0)

D,, (E,<w xsEz) D, (-—Ezsw x<-E;),

(c) two symmetrical outer regions

D,y (W'x2E;), D_,(W'xs<-E,)

For special case wix= X4 it is shown in Fig. 1a,2,3a.

The dynamical behaviour of this system is determined
by the characteristic polynomials associated with the indi-
vidual regions

(@) Do:  P(s)=det (s1-Ag)=(s— 4 X(s— 1) (5~ p3)=

= Sa—Plrsz*‘st-Pa d @

(®) Dy, D_4: Q(s)=det (s 1-A PEE=V)(s-v2)(s-v3)=
=s°-qs?+qs-q; » &)

(©9D,2,D_g: R(s)=det (s1-A)=(s-4, X5, X5~ hs)=
=s'-rs?+ns -1 6)

where 1 is the unity matrix. The individual state matrices
in egns (4),(5),(6) are mutually related by the formulas

Ay=A+byw' , @)
Ag=Aq+bw' =A+(b, +by)W’ ®
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2. Basic Canonical State Model

If the state model is to be elementary canonical [1] it
can be proved that state matrix A and vectors by, b, , w
must have the following forms:

[r, -1 0] 1 v
A=ijr, 0 -1, w=|0], (9a,b)

s, 0 0 0

[P1-qy q1-r
by=|p2-qz|, by=[a-r |, (c,d)

[P3—Q3 93— T3

i.e. the complete state equations are

1 =X (PG H -y ), (108)

d
_:E2.=rzx1-x3 +(P2-G2)hy(X1)+(Gz-12)ha (%), (10b)

L =t + (y- WO+ (@ mb%) (100

The partial PWL feedback functions and the individ-
ual regions are illustrated in Fig.1a, the integrator-based
circuit model corresponding to eqns (10a,b,c) is shown in
Fig.1b. It consists of three ideal integrators, three basic ad-
ders, and a double feedback realized by two blocks defined
by partial PWL functions h1(X1). hz(X1).

y
-x,
u v, U, y
) S AT BN yA y=hy(x,)
Bl y=h(x,)
-E, -E,

0 E, E, x,

.......... -E,

7 ...................... -E,

Dﬂ D| Do D, 1 D. 1
a)
PWL
ll.I(xl) ? ? i
PWL
hy(x,)
<E, 2 }
ps-a)\ [(a-15) () (q,-r,)
) X w X,
-1
Iy f
b)

Fig. 1. Basic elementary canonical state model. a) Partial PWL
feedback functions and the individual regions in eqns (10),
b) Integrator-based circuit model

3. Modified State Model

By rearranging eqns (10a,b,c) into the form [1] the
following modified expressions are obtained

Bk ) Bl )], (112)
X X))l , (110)

E’_;‘ta_=psh,oq)+qathz(x1)-h1(x1)1+ra[x1—h2(x1)1 (11c)

The partial 'PWL feedback functions are illustrated in
Fig. 2a,b,c. The corresponding modified integrator-based
circuit model containing two additional adders is shown in
Fig. 2d. In this structure the basic adder gains are directly
determined by equivalent eigenvalue parameters p;, g;, I;.

y

U»‘ . U‘l
: y=h(x)
Efeooines, ;
E ;
0 B.E x,
—_— E, i .
‘-——v—'—-—’. . a)
D-
y
Ua u, u, U,
y=hx,h(x,)
i EyE,

U, u,

—v_l
D, D,
PWL
hi(x,) @
-1 h
2 ha(x, A
[h(x)-hex)l | Y+ {]"
PWL
Pl P: |14, P {9
» . X, » X, S x,
y Ib -1 : HI> AF II:{>_
[ n r,
ebee)) | Y
"
d)

Fig. 2. Modified elemehtary canonical state model, a), b), c) Par-
tial PWL feedback functions and the individual regions in
eqns (11), d) Integrator-based circuit model
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4. Global State Model
Denoting in eqns (10a,b,c)

f,(Xq) = 1%y +(Pq=Gs) My(X)+(G4-14) ha(Xy) » (123)
f2(Xq) =12Xy+(P2-G2) My (X4)+(d2-12) h2 (%) , (12b)
f3(X4) =r3Xy +(P3-d3) h1(X4)+(Q3-13) ha(X1)  (12¢)

the state equations can be rewritten into the global form'

& ==Xy +f(Xq)

dt (33

dx :
—d—tz"-‘-_xa*fz(xd ,
dx,

dt

(13b)

(13¢)

= f3(X4)

The first partial function corresponding to eqn (12a) is
illustrated in Fig. 3a. The integrator-based circuit model
corresponding to the global state equations (13a,b,c) con-
tains only two adders and three PWL feedback blocks
(Fig. 3b) having the partial transfer functions defined by
eqns (12a,b,c) each of them being represented by the triplet
of related equivalent eigenvalue parameters pj, G;, .

fi(x)

<0

p>0

>0

<0 a,> 0

D, D, D, D, D,

fi(x)

®» 3 15)  f(x)

(ph q” l', ) f|(x|)

A +1 +1 (Pl- Qe rl)'
A N X,
_lj/ 4 1Y ¥

b)

Fig. 3. Global state model a) liustration of the first partial PWL
feedback function corresponding to eqn (12a), . b) integra-
tor-based circuit model corresponding to eqns (13).

5. Application in synchronized chaos

As an illustrative example of the model derived a cha-
otic -attractor with the global attracting set, i.e. a chaotic
motion starts up for any initial conditions, is presented. One
of the serious problems in practical realization of Chua’s
circuit family (i.e. symmetrical three region PWL dynami-
cal systems) is the fact that the attracting set (basin) is lim-
ited. If the state vector gets out of this basin the system ex-

‘hibits unbounded motion. It is true for all the attractors

from Chua’s family because at least one eigenvalue has
positive real part in the outer regions of the PWL function.
When the state vector is large enough then the influence of
the middle region becomes negligible to the system dy-
namics and an ,,almost“ linear unstable system is obtained.
In a real circuit the supply voltage of active network ele-
ments (op amps in the most cases) limits the unbounded
motion, The model derived is suitable for both the analysis
of the phenomenon and synthesis of new chaotic systems
exhibiting a global attracting set.

The new system is derived from the original one by
other two additional regions D+2 and D-2 in the state
space (Fig. 1a). The necessary condition for- a global at-
traction property is the negative real part of all eigenvalues
in the regions, i.e. Re (A) <0 in eqn (6). Additionally,
the system must possess an operating point neither in D.2
nor in D. - because the stable point represents a trap pre-
venting oscillations if the state vector hits the attracting re-
gion. The operating point x* can be obtained from eqn (2)
considering X =0, ie.

0=Ax*+by h(W'x*) +b; hy(w'x*) (14)
and satisfying the inequality
: Iwa* <E, 15)

This condition can easily be expressed for the basic state
model given by eqns (9) where relation (15) is reduced to
|%*| <E; . Substituting x* from the solution of eqn (14)
the final form of the condition is obtained
E2 & > E] qs_—-pl (16)
f3 3
As an example the well-known double-scroll attractor

. has been used [3]. For this case E; =1 and the eigenval-

ues of the additional region are chosen 1; =A4; =43 =-1.

. Then the suitable value of E, must be in the interval -

(2.2 + 2.7) where the condition (16) is automatically satis-
fied and the numerical simulation shows that outside this
interval the system exhibits a stable periodic orbit. The
chaotic attractors for E2=2.5 and two different sets of ini-
tial conditions are presented in Fig. 7a,b.

The global attraction property can be useful for vari-
ous concepts of chaotic-masked communication systems

. where the transmitter is modulated with an information sig-
“nal. It assures that the transmitter can recover from
. any input signal; whereas the original three-region sys-

tems can get in saturation or periodic motion
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without a possibility of recovering from this state. The
block diagram of a simple synchronized system derived
from the elementary canonical models of Chua’s circuit
family is shown in Fig. 8 [5].

28

2

x1 8)

) x1 b)
Fig. 7. Double-scroll attractor for two sets of initial conditions
a)x1=x3=0,%=50; byx1=x3=0, x2= 10.0;
(p1=0.09, p2=0.432961, p>=0.663325; ¢=-1.168,

q2=0.846341, q3=-1.2948; r1=-3.0,r2=3.0, r3=-1.0;)
PWL
) L
L t h2(xt) i
+ wy
(®3-qa} {3-13) (29 l(ql-rl) }l
[I +
5} 2 -
~ PWL
~ hixp) i
[ h2(x1) é‘
+ oy
(r3-q (q2-12) (p1-aN i(q! rl) €>—|—-—<

Fig. 8. Simple synchronized system based on the elementary ca-
nonical models of Chua’s circuit family and its utilization in
the chaotic-masked communication

6. Conclusion

The results presented can easily be extended for any
k>3 and also for n-dimensional Lur’e systems [4]. The gen-
eralized elementary canonical state models represent a suit-
able tool for the modelling and simulation of the chaotic
phenomena in dynamical PWL systems as shown in the ex-
ample of the chaotic attractor with the global attracting and
synchronized chaos simulation. They can also be used as
prototypes for the practical realization of the correspond-
ing circuit models [6].
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