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. Abstract | )

In this contribution we present transform and
neural network approaches to the. interpolation of
images. From tramfonn point of view, the principles
from [1] are modified for Ist and 2nd order
interpolation. We present several new mterpolatton
discrete orthogonal transforms. From neural network
point of view, we present interpolation possibilities of
multilayer perceptrons. We use various configurations
of neural networks for 1st and 2nd order interpolation.

The results are compared by means of tables.
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1. Discrete Fourier Transform

1.1 One-dimensional interpolation with
zero completing

The interpolhtlon feature of 1D DFT is fairly known
and described in basic textbooks about image processmg
{4]. The algorithm is clear from (1) [1).
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1.2 Zero interleaving and filtration
interpolation ,

The spectrum mirroring principle of a zero interleaved
signal and a following lowpass filtration is shown in [4]. In
a higher order subsampling, this scheme can be considered
as one step of a multistage algorithm. In 2D case, we have
more ways of zero interleaving, but mainly the one from
{5], where we speak about the n-th order interpolation.
Interpolations (subsampling) of 1st and 2nd order are the
most important for us.

2. Discrete cas-cas Transform (DCCT)

2.1 Interpolation 1D DHYT with zero
completing ;

The process is very similar to DFT interpolation, only
interpolating - function is identical with DHYT basis.

Consequently, it is necessary to alter only mmahzmg and
tetmmatmg step in (1).

2.2 Interpolatmn with zero mterlea- )
ving DCCT

The spectrum can be described by the equation

A'B
Y, =
X
where Y is a matrix with dimension NxN and A, B are
matrices of dxmensxon N/2xN/2.

Let us have the following transfer function of filter,
which expresses the zero completing for image of half area.
For image 8x8, type 1 is
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As a reconstructed image, we will call an image produced
by following operation:

YN, = 2'(UN,)T '(Hlv,xlv, °YN,xN,) Uy, @)

where

Y=HoY &)
is so called Hadamard product, for which

Yv =H if o i - (6)

2.3 Interpolation with zero completing
with DCCT 2

The spectrum can be described by the formula

A B
Yy = 7
N (JNIZ'B'JNIZ JNIZ'A'Jle) M

The transfer function of filter type 2 is the matrix
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The transfer function of filter type 3 is the matrix, which
for image 8x8 is

1
1
1
1
1

(11111110\
11111100
11111000
11110000
H"lllloooo ©
11100000
11000000
(1 000000 0

Or, after taking a non-separable spectrum symmetry
(around reverted diagonal) in account, we can have also
another type of filter transfer function, which is good with
rectangular transforms. We will call it the type 4 transfer
function.
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3. 2D Interpolation of 1st Order - Con-
clusion

From the preceding parts and other experiences with
2D DOTs, we can derive Table 1,

4. 2D interpolation of 2nd order (even-
tually even B,, B; order)

4.1 2D interpolation of 2nd order with
zero completing

In this case, an image is separable subsampled,
consequently the interpolation can be done separately: zero
completing as in 1D case for the row spectrum and for the
spectrum of transformed and completed rows in spectrum
after column transform.

2D DOT DCTIN | DCCT | DFT |DCCT2| DST MHT |DCTHI| DLT HT
MIRRORING
TYPE no 1 1 2 2 2 2 no no
FILTER TYPE - 1 1 2 3,4 3,4 34 - -

Tab. 1 Interpolation qualities of DOTSs in transform of zero interleaved signal (1st order subsampiing)
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4.2 Zero interleaving interpolation

Spectrum of transforms from Tab. 1, which have
feature of mirroring the spectra of image zero interleaved,

is for image X, .
A. 2D DFT and DCCT

Arwmy Ay,
o e Y]
(BHE) GHE)
B. 2D DST, MHT, WST, IDCT Il and IDLT
. ‘An W, Ay vy Yoy
Yy, =| 5 [‘i}{'z‘) | (‘i}‘(’z‘] (‘z‘;) (12)
U EME) TE)BHE) G
Then

Y v, =4'(UN.)T' (HN.xN, °Y~,xN, ) UN, 13)

Results for image NELA of size 256x256 pixels are

presented in Tab. 2 and 3.

2D DOT overlap
8x8/8x8 8x8/4x4 16x16/8x8
MSE MSE MSE
DFT, DCCT 42,941 17,747 18,075
DCT I 47,208 26,301 18,741
> DST: 55,433 38,339 20,617
MHT 68,362 47,587
DLT 82,017 43,223
WST 42,628 37,28
Tab.2 Dependence of MSE between 1st order interpolated

image and original from different DOTSs, block size and overlap
size, where nominator is size of transform biock and denominator

is size of biock retained as a result of interpofation.

2D DOT
overlap
8x8/8x8  8x8/4x4  24x24/8x8
MSE MSE - MSE
DFT, DCCT | 166,953 52,546 46,473
DCTIII 1074,254 | 259,975 64,453
- DST -~ | 1444,731 | 574,661 107,157
~ MHT 1960,868 | 886,458 ' ]
DLT 1502,382 | 547,572
WST 168,396 169,453
Tab.3 Dependence of MSE between 2nd order interpolated

image and original from different DOTSs, block size and overlap
size, where nominator is size of transform block and denominator |

Is size of block retained as a result of interpoiation.

5. Multilayer Perceptron (MLP) as a
Non-linear Interpolator

To perform neural network interpolation of the 1st and
the 2nd order, we concentrate on the multilayer perceptron
(MLP). The basic MLP building unit is the model of an
artificial neuron. This unit computes the weighted sum of
the inputs plus the bias weight and passes this sun through
the activation function (usually sigmoid).

In a multilayer configuration, the outputs of the units
in one layer form the inputs to the next layer. The weights
of the network are usually computed by training the
network using the backpropagation algorithm.

A multilayer perceptron represents nested sigmoidal
scheme [6], [3] - its form for the single output neuron is

oo i)

(14)

where @() is a sigmoidal activation function, w,; is the

synaptic weight from neuron j in the last hidden layer to

the single output neuron o, and so on for the other synaptic
weights, x; is the i -th element of the input vector x. The

weight vector w denotes the entire set of synaptic weights
ordered by layer, then neurons in a layer, and then number
in a neuron. & ‘

Here we use the standard backpropagation algorithm
without any modifications. Our notation for the MLP
architecture is following: for a 3-layer neural network, the
configuration n-m-p means that the MLP contains n input
neurons, m hidden neurons, and p output neurons.

We are interested in 2 approaches in using MLP as the
1st order interpolator:

- non-block approach - 1 pixel is interpolated from 4
surrounding pixels

- block approach - 4x4 block is taken, 8 missing values
are reconstructed from 8 original pixels.

For 2nd order interpolation, we use block approach
only; 4x4 block is taken, 12 missing values are
reconstructed from 4 original pixels.

For training the neural networks, a 512x512 training
image constructed from fragments of images of various
faces and sizes was used. Lena 256x256 image (called here
NELA) was used for testing. .

The results for 1st order interpolation for non-block
and block approaches "are shown in Tab. 4 and 5,
respectively.

The results for 2nd order interpolation for block
approach are shown in Tab. 6.

From the presented tables it can be seen, that within
one chosen method there is no significant difference
between the chosen MLP architecture, i.e. the simplest

- architecture ‘can be used. For 1st order interpolation, very

fast training can be noticed (by 1 cycle we mean presenting
training image to the network).
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Network | MSE PSNR [dB] Number of cycles
4-1 16,82 35,87 5
4.2-1 16,5 35,96
4-8-1 16,97 35,83
4-16-1 17,65 35,66
4-8-16-1 | 17,24 35,76

N[ W1

Tab 4. 1st order interpolation resuits for NELA 256x256 by various
MLP configurations, trained by standard backpropagation, leaming
rate parameter=0.1, shuffled patterns, non-block approach

Network MSE PSNR [dB] Number of cycles
8-8 25,8 34,02 3
8-16-8 29,17 33,48 6
8-16-32-8 | 27,17 33,79 30

Tab 5. 1st order interpolation resuits for NELA 256x256 by various
MLP configurations, trained by standard backpropagation, leaming
rate parameter=0.1, shuffied pattems, block approach (4x4 blocks)

Network MSE PSNR [dB] Number of cycles
4.12 12841 27,05 40
4-8-12 1283 | 27,05 200

4-8-10-12 128 27,06 300

Tab 6. 2nd order interpolation resuits for NELA 256x256 by various
MLP configurations, trained by standard backpropagation, leamning
rate parameter=0.001, shuffied pattems, block approach (4x4
blocks)

References:

(11 Wang,Z WangL.: Interpolation Using the Fast
Discrete Sine Transform, Signal Processing, No.26,
1992, 131-137

{2] SontagE.D.. Remarks on Interpolation and
Recognition Using Neural Nets, Advances in Neural
Information Processing Systems, Vol. 3, 1991, 911-917

{3) Homik,K.: Multilayer Feedforward Networks Are
Universal Approximators, Neural Networks, Vol. 2,
1989, 359-365

(4] Kotuliakovd, J., Petrfk, T., Rozinaj, G.: Signdly a
sistavy, ES SVST, Bratislava, 1988 ‘

(5] Farka$, P., Herrera, S., TvaroZek, M.: Adaptive Image
Coding Based on Generalized IBTC, In: Bauerfeld, W.,
Spaniol, O.: Broadband Islands 1994, Hamburg, 147-
154

(6] Haykin,S.: Neural Networks (A Comprehensive
Foundation), Macmillan College Publishing Company,
New York, 1994

About authors...

Jaroslav POLEC received the Ing. (MSc.) degree in
electrical engineering, PhD. degree in telecommunications
and Doc. degree from FEI STU in Bratislava. At present he
is the associate professor at the Department of
Telecommunications of FEI STU in Bratislava. His
research interests include signal processing and probability
models,

MiloZ ORAVEC received the Ing. (MSc.) degree in
electrical engineering and Dr. degree in applied informatics
from FEI STU in Bratislava. At present he is lecturer at the
Department of Telecommunications of FEI STU in
Bratislava. His research interests include signal processing
and neural networks.



