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Abstract

Electrical activity of a human brain measured on
the skull (electroencephalogram, EEG) contains in the
sleep period many transients (sleep spindles, spike-like
structures or vertex waves), i. e. bursts of EEG activity
of limited duration, having random occurrence and
may be coupled with specific sleep stages. A
computer-based detector was designed that detects a
transient called K-complex. The detector is based on
linear matched filtering and its  nonlinear
modifications. The linear and nonlinear approaches
are compared and evaluated with respect to the
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1. Introduction

Sudden physiological changes that are coupled with
transients in human sleep EEG can be evaluated by means
of event-related averaging, assuming the transient as an
event. One of the most important transients is K-complex. It
is a specific wave of 0.5 to 2 s duration and occurring every
30 to 100 s during a part of the night. For the purpose of
K-complex-related averaging a detector of K-complexes is
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Fig. 1. Many different morphologies of the detected pattern.

necessary to detect the pattern in an EEG signal. The
detector must take into account very large pattern
variability — Fig. 1. This means — in a technical sense- that
an exact definition of this pattern cannot be achieved.
Therefore it is not surprising that the visual scorers reach
only a 50-60% agreement [1]. The recent studies on
K-complex detection do not provide us with satisfactory
results. In [2] neural network performed well on simulated
data but failed on a real EEG signal. It may well be due to
the lack of long and consistent set of training vectors. The
matching pursuit detection algorithm [3] is computationally
inefficient and time-consuming, what together with low
sensitivity is unacceptable for the clinical use.

For the detection we developed automated detectors
that are based on nonlinear modifications of a classical
matched filter.

2. Methods

The sleep EEG data (approx. 1000 hours of
recording) available for the project were recorded in DLR
Institute of Aerospace Medicine, Cologne, Germany. For
the processing the data were transferred to an experimental
platform MATLAB (The MathWorks, Inc., USA).

The pattern to be detected is described as a biphasic
wave that is beginning with a faster negative-voltage wave
which is followed by a slower positive wave. The duration
of a K-complex is between 0.5 and 2 seconds. The
peak-to-peak voltage should exceed 75 pV and should be at
least twice as high as the voltage of the activity in Is
interval preceding the K-complex.
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Fig. 2. Architecture of all three detectors. In the EEG signal,
parts with fast leading slope and with high voltage in
freq. range same as the range of K-complexes, are
investigated for sufficient peak-to-peak voltage and then
they enter the matched filters.

The matched filters were used as rejecting criteria, i.e.
parts of the EEG signal that were equivocal to contain
K-complexes were fed into the matched filters. The pre-
choice was done by a set of filters and decision logic. As it
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is stated in the definition, the pattern is biphasic, thus its
main spectral component should lie between 0.5 and 2 Hz.
At the same time the pattern begins with fast leading edge.
A bandpass filter with cut-off frequencies 0.5 and 2 Hz and
a differentiator to detect steep leading edge were used in
that block. When both conditions are met, the voltage
criteria are considered. Then the signal is allowed to
propagate to the matched filters — Fig. 2.

2.1 Classical matched filter
(covariance filter)

Classical matched filter is used to detect the time
instants, when the recorded signal x, is similar to the known
template s. This is recognised as a maximal output of the
matched filter:
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template. As it was shown in [5], when the local mean value

of xy is unstable, the detector’s peak output is not a reliable

indicator of signal similar to s. This can be overwhelmed by

subtracting the local mean value both from the x, and s thus

obtaining a covariance filter:
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As the pattern’s voltage varies from a K-complex to
K-complex and it is desirable to detect both low- and
high-voltage K-complexes, every possible (equivocal)
K-complex is normalised in voltage, before it inputs into
the matched filter. The normalisation process is crucial for
the proper work of the detector. Many tests were performed
including normalisation of signal’s energy, amplitude of
K-complex’s first harmonic component and the best one
was chosen. The normalisation yields constant peak-to-peak
voltage across all investigated K-complexes. There is no
need to subtract the DC shift from the recorded signal, as
its mean value is —due to the signal’s nature- zero.

2.2 Euclid nonlinear matched filter

The euclid nonlinear filter [5] applies slightly
different similarity criteria than the classical covariance
filter. The comparison of vectors x, and sis based on
minimising of the difference vector

L(s)-1
ka - S"2 = Z(xk—-L{x)+2 - S:‘)2 ()
i=0

Simplifying the equation (2) and omitting the constant term
L(s)-1
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This so called euclid filter was also applied on the EEG
signal with normalised peak-to-peak- voltages of each
possible K-complex.

It is clearly visible, that the first term of the equation
(3) can be computed as a FIR filter with its impulse
response identical to the time-reversed vector s. The more
the vectors xi and s are similar, the lower output values of
Vi is obtained.

2.3 Cosine nonlinear matched filter

The third and the last modification of the classical
matched filter, that was tested, was cosine filter. This
nonlinear filter evaluates the angle in the signal space (or its
cosine) between vector x, and the template s:
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The cosine function is monotonous in the employed interval
[5]. Solving the eq. (4) for ¢ and omitting the factor |s|| we
get
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The templates for the matched filters were chosen
from an averaged K-complex - Fig. 3 (average of 200
K-complexes). The template was then resampled in order to
get different lengths of templates that could cover the
variable length of all the K-complexes to be detected.

All the three matched filters were used in non-
continuous operating mode. l.e. a simple pre-selection

Template for K-complex
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Fig. 3. Template profile used for K-complex detection.
Template duration of 2 s. This form corresponds to an
approximation of a K-complex profile (bipolar
morphology).

algorithm, partly based on the K-complex definition,
marked possible K-complexes, and after applying the peak-
to-peak voltage criteria, the matched filters were used to
reject false detections. The output signal y of the matched
filters contained several peaks. Fortunately, the peak
corresponding to the detected K-complex has always its
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stable position within the output vector y. That is why the
thresholding logic searched for the peak output only in
a certain interval within the output vector y. It enabled us to
set lower thresholds values and lead to an increased
detection sensitivity.

3. Results

Three computer-based detectors were designed
(Fig. 2), capable of detecting the K-complexes in human
sleep EEG signal. The detectors are distinct in their
fundamental block, i.e. the matched filter. The first filter is
based on a classical linear covariance filter, whereas the
two others make use of the nonlinear matched filters. The
second and the third contain the euclid and the cosine
nonlinear matched filter respectively.

The detectors were tested on a sleep EEG taken from
different subjects. The signal (ca. 200 minutes, sampling
frequency 128 Hz) was visually scored by an expert, who
found 304 K-complexes in the recording. That value is
taken as true positives (TP). Table 1 shows the number of
K-complexes found by each detector, the number of missed
patterns in the recording (false negatives, FN) and the
number of false detections (false positives, FP).

All three detectors can recognize all clear and
unambiguous patterns. The differences among detectors
encountered only when detecting more or less unusual
shapes. The euclid detector performed well on all patterns
except for higher-voltage ones. This can be probably due to
smaller similarity of the pattern and the middle-voltage
(averaged) template.

Assuming the covariance filter as a standard detector,
we can say, that the euclid matched filter produced a twice
as high number of both false positive and false negative

Tab. 1. Comparison of the detectors’ efficiency.

Detector Patterns Found by Missed by | False
detected by | detector detector detection
an expert (FN) by detector
(TP) (EP)
Covariance 304 257 63 16
Euclid 304 216 120 32
Cosine 304 280 28 4

detections. Primarily due to the number of false positives
(approx. 10% of all K-complexes) the detector is inaccurate
for being used as a trigger for event-related averaging.
Whilst the cosine detector produced a half-number of false
positive and false negative detections comparing with the
covariance filter. The number of missed patterns (FN) is 28
and the number of false positive detetections is only 4 of
304 K-complexes in the recording. Those results rank the
cosine detector to the most reliable that has ever been
designed.

4, Discussion

The detectors are used to mark events for
event-related averaging of other biosignals. For that
purpose a detector with the lowest number of false positive
detections should be used; i.e. the cosine detector can be
successfully used, as it gives only negligible number (1.3%)
of false positive detections.
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