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Abstract

A consistent theory of optimal subband coding of
zero mean wide-sense cyclostationary signals, with N-
periodic statistics, is presented in this article. An M-
channel orthonormal uniform filter bank, employing
N-periodic analysis and synthesis filters, is used to
Jorm the subband coder. A dynamic scheme involving
N-periodic bit allocation is used, while an average
variance condition is applied to evaluate the output
distortion, In three lemmas and final theorem, the
necessity of decorrelation of blocked subband signals
and requirement of specific ordering of power spectral

\ densities are proven. J
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1. Introduction

A structure of the Multirate Subband Coder for Wide-
sense Cyclostationary Signals, that is to be treated
hereinafter is depicted in Fig. 1. Set of filters
H, (k,z7'yand F (k,z™"), represent the Analysis Bank
and the Synthesis Bank respectively. The index k indicates
time varying nature of these blocks, since each of them in
fact consists of a sequence of N LTI (Linear Time-
Invariant) filters, where N is assigned to the periodicity of
cyclostationarity of an LPTV (Linear Periodically Time-
Varying) structure. For the sake of simplicity we assume
that period of time variation of the structure in Fig. 1 is
the same as that of input signal. Blocks to the left of the
analysis bank are M-fold decimators that discard all but
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every M-th sample. Blocks to the right of the synthesis
bank are M-fold interpolators that raise the sampling rate
by a factor of M, by inserting (M-1) zero samples between
two consecutive samples of an incoming stream. Blocks
O, stand for A-D converters, communication channel and

D-A converters all together.
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Fig. 1: Multirate Subband Coder for WSCS Signals

Solely for the purpose of following derivation, they
are assumed to be a source of additive, uncorrelated, zero
mean quantizing noise g, (k) (see Fig.2), such that

w, (k) =v,(k)+q, (k) , )
and the variance of which is
oy =c2al. (2)

Here O'j. is the variance of i-th subband signal and ¢ is a

constant determined by the signal distribution.

The WSCS (Wide Sense CycloStationary) signal to
be coded is denoted x(k), subband signals are v, (k) ’s (for
i running from 0 to (M-1) ), x(k)is the reconstruction of
x(k), synthesized in the output of the synthesis bank.
Matrices E(k,z™') and R(k,z™")in Fig.2 are polyphase
representations of the analysis and synthesis filter banks,
respectively. They are introduced to simplify mathematical
treatment of the coder. Since both analysis and synthesis
filter banks are LPTV structures, these polyphase matrices
are also LPTV, as denoted by time index k.

The goal to be achieved is to bring the synthesized
output %(k)as close to x(k) as possible, by minimizing
distortion introduced by quantizers, i.e. maximizing so
called Coding Gain of the coder. This is done by suitable
choice of the analysis and synthesis filter banks, as well as
by proper allocation of bits b, to individual quantizers Q, .

The overall bitrate

1 A=l
=—) b(k 3)
MZ (k)

is kept constant for all k.
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where X (k) in the numerator is a reference output of the

direct quantizer depicted in Fig.3, and where the
denominator can be expressed after using AM-GM
inequality [2] as

26 N M
c2”

VN Z(Hav,m] SO

j=0

JCG

Expression (5) is the function to be minimized to
achieve optimum performance of the coder. Especially for
M=>2 it is not a trivial task, and the rest of this article is
mostly devoted to the solution to this problem.,
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(k)
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Fig. 3: Direct b-bit Quantizer (PCM)

To overcome problems brought to the analysis of the
proposed structure by LPTV nature of the filter banks, an
equivalent Blocked LTI system is to be analysed, as
depicted in Fig.4. Here, the parallel (time-demultiplexed)
input signals x(k), subband signals v, (k) together with
associated quantizing noise signals g (k) and parallel

reconstructed output X(%), can be described by NM-fold
vectors X (k), V(k), O(k) and X(k),
Matrices E(z') and R(z™') are so called Blocked

Polyphase Representations of the analysis and synthesis
bank respectively, while the decimators, interpolators and
delay-chains displayed in Fig.2, lay outside the depicted
structure [5].

respectively.

Fig. 4 Blocked Version of Multirate Subband Coder Using

Polyphase Representations of the Filter Banks

2. Mathematical concept

In following definitions, lemmas and theorem, our
effort is to prove that optimal performance of the LPTV
Multirate Subband Coder, i.e. maximised Coding Gain as
defined in (4), (5), is achieved if subband signals
v, (k) are mutually decorrelated and diagonal elements of
the PSD (Power Spectral Density) matrix of the vector
V (k) obeys a specific ordering for all @ . This ordering

shall be unique.

Definition 1:

Consider a sequence 4 = {a [}rM:\r , such that
a, 2a,2..2a,, >0, where MN=MxN.
Define a set of integers S={1,2,3, ..... ,M}, its
partitioning {SI,SZ,...,S } such that

cara'[ ] M, Vie{l2,.. N}.

Define a Characteristic Sum

UM
J(A4,5,,8,,...,8y) = Z[Ha,] , (6

1es§,

and a Minimum Sum

J*(A)=SI§11..?S J(A4,S,,S,,...,8y) W)

where the sequence-argument
{S* () ={8,* (4.5, *(4),..5, * (4}, ®

represents The Best Ordering of a sequence A4, that may
not be unique.
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Lemma 1: Theorem 1:
Consider sequence A, and J, J* {S*(4)} as in (6) Let @(x,,x,,...,x,)be a real-valued function,
* E
through (8). For k €5, *(4) , [e§;*(A), where where x, 2x, 2.2 x, 20, defined on I < R"and

kle{12,. . ,MN}k=1, i,je{l2, . ,N}i=;.
Let introduce:

a,= Jla,, ©)

qes ¥ A)g=k

z,= [la,.

qeS;*(A)q=l

If a,>a;,thenqa,, <a,,.

and
(10)

Proof: By contradiction
Consider

J'(A) = J(4,8,%8,*,..,8%.,8 % ,8,* an

where

~

Sx={s, *(4) - {k}juiy .
§,4={s,* () -{nJutk)

Then write:
J'(A)-J*(4) = (aIcTI.‘k)"M + (akE}.J)”M -
(aia”)wM _ (akaf’k )l,fM - (aIIJM _ ak”M) x

- M — UM
( ik —-a )

it
Assuming @, >a, and also @, >d,, we conclude
that J'(A) — J *(A4) <0 Since J *(A4) is
The Minimum Sum, this establishes a contradiction.

Hence, for a, > a,,

Z}':._k < EJ._, (12)
must hold.
Definition 2: Majorization
Lets take sequence 4 = {GJ}T and A = {,{I};‘_‘T
with elements labeled such that

aza,z2..za, 20, A =2i4=2..21,20.
Suppose that 4 and A obey relation:

k k
2.a, <) A, forl1<k< N,

i=1 i=1
with equality at k=N. Then we say that A majorizes 4, or
A is majorized by A , noting A < A .

(13)

Definition 3: Schur-concave function
A real-valued function ®(x,,x,,...,x,), defined

on a subset 3 R” is said to be strictly Schur-concave
on this subset whenever X < Y implies
O(X)2d(Y)

with equality if Y=Y in terms of equal elements.

(14

twice differentiable on its interior. ©(x,,x,,...,x,) is

symmetric on 3. Denote [2] :

AD(X
Py (X) = *"551—) and
_FPX)
Oy (X) = G,

Then ©(X) is strictly Schur-concave on 3 if:
L. @, (X)is increasing in k
2. Py (X) = @y (X) implies:
Ry (X- ‘Rk,h])(X-) - (Qm,k)(x) + @kn,ku)(’k’) <0

Proof of this theorem is available in [3].

Lemma 2:
The Minimum Sum as presented in (7) is strictly
Schur-concave function and hence for all 4 and A,

A < A implies

J*(4)zJ*(A), (15)
with equality if 4 = A in terms of equal elements.
Proof:
From definition of J¥A) we have

J *(A4) = J*(T14) for any permutation matrix 1.
Hence J*(4) is symmetric on 3. Let’s take the derivative

M
1 1 VM-1
S *(A)=—[ ﬂj a " =—a o/
@ M MH,; M™
Vk €{1,2,... MN}. Similarly for /=k+1:
U _um iae
Sy ¥(4) = Eam a .
Under the assumption @, >@,,, >0, is g, '*" ‘amtw_l

for M 272. From Lemma 1, we get 0<a,, <a;,.
Obviously J,, *(A) is increasing in kas required by
Theorem 1.

If it that @y, (A4) = @1, (A) then
requirement #2 of Theorem 1 is satisfied as well, since
Py (A) and @, .1y (A) are negative in sign (recall
that (1/M-1)<0) remaining two  partial
derivatives are positive in sign or equal to zero, depending
on whether kand k+/ are in the same S, * (A) or not.

Lemma 2 then follows from definition of Schur-concave
function. Hence the result.

happens

and
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Proposition 1:
Consider a

MN x MN positive

Hermitian symmetric matrix S , its diagonal elements
A= {ar_}f”? ,suchthat a, 2a, 2.....2a,,, =20.

semidefinite,

Consider sequence of eigenvalues A = {,1 ‘}!MT ,such
that 4, > 4, >.....2 A, > 0. Then:

A=A (16)

3. Existence and uniqueness of the
optimal solution
The assumed all-pass nature of the Analysis and

synthesis filter bank allows us to take an advantage of the
results gained above. Perfect reconstruction calls for

Rz"=E"(™). a7
Orthonormality  (the all-pass  property)  requires
E(e™®),R(e™) being unitary for all @, i.e.

R ™R =E™ECe ™" =1. @8

Moreover PSD matrices S (@) of X(k) and S, (@) of

V (k) are both positive definite Hermitian symmetric

matrices, thus the sum of their diagonal elements is
majorized by the sum of their eigenvalues. We can write

[2]:

S.=U (e‘f‘”)ﬁ(m)[f]’ (e"’"")]_ (19)
where U (™) is unitary at all @, and
K(@) = diag{7 (@), .., by (@)} 20)

obeying ):(w) > ;:4-1 (@)> 0. Also follows from Fig.
4, that PSD matrix of ¥ (k) obeys

Sy = E(e7)Sy (@) E(e™™)] @1

Let’s return to the denominator of the Coding Gain (5)
that concerns the subband variances O, (j)for

i E{O,..,M—]} . J e{O,,‘,,N* I}. Obviously the ordering
of the sequence

z; Z{Gt,-(J)L: iﬁ&(m}dw} l0<k<AMN-1
0 e

plays an important part in minimizing (5).

Lemma 3:
Consider sequence X as above and A (®@)as in
(20). Then under (18):

1 2;:~
;< ——( /?t(a))da)] 0<k<MN-1;. (22)
27\,
Kk
Proof:
Suppose that the elements of S, (@) are not

ordered in a consistent way at all @, e.g. around some

frequency @, (S?(ggl )) ) >(SI7(@1 )]H, but around
another frequency @, (Sﬁ,(a)l )) ) <[S:7 (o, ))u' Then at
each @ there exists a permutation matrix P (@) such that
for all @,

S’7 = P(w)Sz(w) P'(w) (23)
obeys
(7 (@), 2(5; (@), - @4
Define
_ 1(%
Y= —US';(w)dw] 0<k<MN-1 (25)
27\, **
Clearly, forall 0</< MN -1 and @
! !
> (S@) <X(S7@) . e
k=0 ke k=0 4
with equality at / = MN — 1. Hence:
[ ] 2T
>[5y @) do < [(Sp@) do. e
k=0 @ k=0 o e
From (25) then
PIFED I (28)

Also, P(w)is a unitary permutation matrix. Thus from

(18), (19-Q21), @3) A(w)are the eigenvalues of

S" % (). Then from the Proposition 1, for all@ and
0<I<MN -1,

1 I -
2($7(@) <X i) 29)

k=0

with equality at / = MN — 1. Result (22) follows directly
from (29) that is the definition of majorization.
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Theorem 2: o ‘ P 270N 52 () =27 52 (), (30)
The optimum coding, i.e. the maximum coding gain then the output distortion reaches its minimum.

is attained if both of the following hold:

1. The subband signals v, (k)are totally
decorrelated for all £, i.e. the blocked PSD matrix
S, () is diagonal.

2. The diagonal elements obey a specific ordering at
each @. The ordering itself is not unique, but
results in a unique minimum value, the Minimum
Sum.

Proof:
First requirement follows from Lemma 2 and

Proposition 1, since diagonal PSD matrix S, (@), which

was obtained by unitary transform (filtering by all-pass
filter bank) indeed contains its eigenvalues on the

principal diagonal. Letting E(e‘f“’)zﬁ(e"f"’) is one
possible solution.

Second requirement is a consequence of Lemma 3,
the existence of a specific permutation matrix P(@) that

sorts the eigenvalues of S, (@)in such a way, that
o, (j) ’s will minimize (5).
Hence the result.

4. Conclusion

The goal of this short insight into Multirate Subband
Coding was to establish requirements for optimum
subband coding of WSCS signals using uniform
orthonormal filter banks. The results stated in Theorem 2
are similar to those obtained in [2] or even [4] as for the
requirement of decorrelation of subband variances.

However the ordering of diagonal elements of PSD
matrix or even those of the correlation matrix of subband
variances is much more difficult task. Despite of the fact,
that there exists an ordering that leads to the Minimum
sum, thus to the optimum solution, there is no specific rule
how to order these variances in general. The Minimum
Ordering itself depends on the values of individual
variances. From this result the only way to solve the
problem, is to charge the computer with finding the
minimum solution, once decorrelation is entered as a
necessary condition.

The previous paragraphs treated almost solely the
filtler bank design. Once the filters g (k,z7')’s and

F,(k,z™")’s are obtained by deblocking and polyphase
decomposition of the matrices E(z™') and R(z), the

only remaining task is allocating bits to individual
subband quantizers. From AM-GM inequality, that was
used to express (5), follows the condition for minimized
mean square distortion at the output of the coder. If for all

k,le{oL...,M~1}and j €{0,1,..., N — 1} holds

Since o (5) s will be know from the filter bank design,
bit allocation becomes a trivial task.

Suitable ways how to actually design a uniform
orthonormal or orthogonal filter bank, knowing the PSD
matrix of the input WSCS signal, are of persistent author’s
interest.
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