# **IMPULSE DETECTORS FOR NOISED SEQUENCES**

Rastislav LUKÁČ Dept. of Electronics and Multimedial Communications Technical University of Košice Park Komenského 13, 041 20 Košice Slovak Republic

## Abstract

This paper is focused on a problem of impulse detection in the dynamic image environments corrupted by impulse noise. Using a proposed architecture that includes an impulse detector and the median filter, the effective methods can be designed. Thus, the image points are classified into two classes such as a class of noise free samples and a class of noised image points. In the case of impulse detection the estimate is performed by a median filter whereas a noise free sample is passed on the output without the change i.e. system works as an identity filter.

#### **Keywords**

impulse detector, median filter, dynamic noised image sequences, motion compensation

# **1.Introduction**

In noise filtering, a problem is often how to preserve some desired signal features while the noise elements are removed. An optimal situation would arise if the filter could be designed so that the desired features are invariant to the filtering operation and only noise would be affected. Probably, the simple median [8,17] is still most used a nonlinear filter for its properties such as robustness and the noise suppression. Since the median filter is a nonlinear filter and the superposition does not apply, the optimal situation can never be fully obtained.

However, by a proposed connection of an impulse detector [1,16] and the median filter, it is possible to obtain system that realises an optimal filtering, i.e. noise free samples are passed on the output without the change (system works as an identity filter) whereas corrupted elements are estimated by the median filter. The impulse detectors classify the samples into these two classes.

Many algorithms of the impulse detection were developed for gray-scale static images. Thus, the various principles; that are represented by e.g. mean-based E detector [12] and its extensions such as biased Ep detector [12,13] and E detector with a fuzzy decision [16], family of orderstatistic detectors [16] (OSD, COSD), local contrast of the probability (LCP) [3], entropy-based H-detector [6], use of standard deviation is characterised by SDV detector [13] [15], on the desired properties of LUM smoothers based excellent LUMsm detector [7] and neural detector (ND) [14] that utilise the training capability of neural networks; were successfully used in the connection with standard 3x3 median filter. However, the performance of the detectorfilter system depends on the accuracy of the impulse detection. This dependence is not the same for all filters, i.e. the use of more accurate impulse detector might improve the performance of one filter considerably more than the performance of another filter. The relationship between the accuracy of the impulse detection and performance of filter cannot be determined analytically, but instead needs to be determined experimentally. On that account the performance of the lonely impulse detectors is evaluated through a number of true and false classified samples. The use of standard objective criteria, e.g. mean absolute error (MAE) or mean square error (MSE) is possible in the case of connection with some filter. More frequently, the proposed architecture consists of the impulse detector and a 3x3 median filter, since, the median is considered as a basic nonlinear filter. Thus, MAE and MSE show the improvements introduced by the use of impulse detector in compare with the solitary 3x3 median.

This paper is oriented to the performance of some impulse detectors for multidimensional signals such as dynamic image sequences, i.e. spatiotemporal data [5], that is a time sequence of two-dimensional (2D) images. On that account, to analyse detectors performance four operation structures for image sequences were used. However, the 3x3 median filter was still considered.

# 2.The input set

In the static image area, the performance of impulse detectors (for most frequently used windows) was presented in [3,6,7,12,13] and extended in [16]. In case of these experiments, two-dimensional windows were applied on the two-dimensional signal. However, the image sequence filtering gives more possibilities since an image sequence is 3-dimensional (3-D) dynamic signal. Therefore in this paper, the four detector windows (Fig. 1) are used to capture signal features in the temporal direction, the spatial position and the spatiotemporal position.

In the case of temporal direction, the input set includes samples along the time axis. This way is similar to onedimensional case, where the temporal correlation between the frames makes itself felt. Thus, the input set W that is determined by the temporal window through three frames (denotes as TW3) (Fig. 1a) can be expressed as

$$W = \{x(n+m, i, j), -1 \le m \le 1\}$$
(1)



Fig. 1 Operation windows for dynamic image sequences: (a) temporal window – TW3 (b) 3x3 spatial window – 3x3 SW (c) spatiotemporal window – STW<sub>1,9,1</sub> (d) spatiotemporal cube window – STW<sub>9,9,9</sub>

Note, that all windows considered in this paper are centred around the central sample  $x^*$ . In the sense of subscripting used in this paper, central sample  $x^*$  is given by

$$x^* = x(n, i, j) \tag{2}$$

where n denotes time position or a frame item and i, j are indices of sample position in horizontal and vertical directions, separately.

The second window (Fig. 1b) represents the widely used filter window in image filtering. Concerning image sequence processing, in this case the input set includes samples from the processed (actual) frame only, and no information about neighbouring frames is needed. This spatial 3x3 window is denoted as 3x3 SW and the corresponding input set is determined by

$$W = \{x(n, i+k, j+l), -1 \le (k, l) \le 1\}$$
(3)

Fig. 1c-d shows two spatiotemporal structures that operate in the three frames. Thus, the temporal correlation between the frames and the spatial correlation of the samples within the considered frames are utilised, simultaneously. The first (Fig. 1c) spatiotemporal window  $(STW_{1,9,1})$  is the unification of equations (1) and (3), that is following:

$$W = \{x(n-1,i,j), x(n,i+k,j+l), x(n+1,i,j), -1 \le (k,l) \le 1\}$$
(4)

The second is the cube window  $(STW_{1,9,1})$  of 27 image points from three frames:

$$W = \{x(n+m, i+k, j+l), -1 \le (m, k, l) \le 1\}$$
(5)

Note, that all previous input set can be expressed as subsets of the cube window.

For simplification in the following, the reduced description of input samples is used, where the temporal and location indices are replaced by one subscript.

#### **3.Impulse detectors**

From the character of impulse noise [10] is known that only some samples are corrupted. Therefore, it can be

desired that impulses are removed only and original image points are invariant to the filtering operation. There is frequent that especially median filtering of noise free pixels bring error into filtration process. On that account were introduced impulse detectors (Fig. 2) that classify samples into a class of noise free pixels and a class of corrupted elements.



Fig. 2 Proposed architecture of impulse detector and median filter

Thus, this decision is performed on the base of neighbourhood information. In the case of impulse detection the output is equal to the median of input set. On the other hand, no corrupted samples are passed on the output without the change, i.e. system works as an identity filter.

#### 3.1 E detector

The name of E detector [12,13] follows since it is based on the mean value  $\mu$  of input set. The decision rule of E detector is given by

IF 
$$D = M$$
 THEN median filter  
ELSE identity filter (6)

where

$$D = \left| x^* - \mu \right| \tag{7}$$

$$M = \max_{i=1}^{N} (|x_i - \mu|).$$
(8)

and N is the window size,  $x_i$  represents a simplified notation of samples from the input set W.

If the absolute difference D associated with central sample is equal to the maximal absolute difference M then the central sample  $x^*$  is probably distorted and therefore should be filtrated.

## 3.2 SDV detector

To improve the detection property of E detector some its modification (biased Ep detector [13] and E detector control by fuzzy logic [16]) were developed, however the performance (Ep) or complexity (fuzzy E detector) exclude their use in dynamic image sequences. Additional improvement of the E detector was obtained by including standard deviation  $\sigma$ .

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$
(9)

to the detector rule and it was called as SDV detector [1]:

IF 
$$D \ge \sigma$$
 THEN median filter  
ELSE identity filter (10)

Thus, if the D (7) is greater than the standard deviation  $\sigma$  (9), the central sample is probably distorted because it is more different from others input samples.

#### 3.3 COSD detector

The central order-statistic detector (COSD) [16] belongs to the class of detectors based on order-statistics. Thus, the input set W must be sorted and the detector rule is given by:

IF 
$$|\mu - x^*| \ge Tol$$
 THEN median filter  
ELSE identity filter (11)

where *Tol* is the threshold (robust value was found 40) and  $\mu_n$  is mean of *n* mid-positioned ordered samples

$$\mu_n = \frac{1}{n} \sum_{i=(n+1)/2}^{N-(n+1)/2} x_{(i)}$$
(12)

Thus, the extreme order-statistics (usually outliers) are excluded and the  $\mu_n$  is determined from probably no corrupted samples.

#### 3.4 LCP detector

Idea of LCP detector [3,6] is based on following rule:

IF 
$$P^* \ge P_C$$
 THEN median filter  
ELSE identity filter (13)

where  $P_C$  is a critical value defined as  $P_C = 1/N$  and  $P^*$  is the local contrast probability (LCP) of processed pixel (i.e. for i = (N+1)/2) given by

$$P_{i} = \frac{C_{i}}{\sum_{i=1}^{N} C_{i}} = \frac{C_{i}}{C_{S}} , \qquad (14)$$

where N is window size,  $C_i$  is associated contrast for any samples from the input set and  $C^*$  ( $C^* = C_i$  for i = (N+1)/2)

is associated contrast of central sample  $x^*$ . The associated contrast is defined according to the Weber-Fechner law by

$$C_i = \frac{|x_i - D|}{D},\tag{15}$$

where D(7) is mean of input set W. Thus, a central pixel is considered as noise and the output value is determined by the median if the local contrast probability of the central sample is greater than or equal to  $P_C$ .

## 3.5 H detector

Unlike LCP detector, on the entropy based H detector [6] utilises the adaptive critical threshold value defined by the following equation:

$$\eta = \frac{-P^* \log P^*}{H} = \frac{-P^* \log P^*}{-\sum_{i=1}^N P_i \log P_i} \,. \tag{16}$$

Local contrast entropy H is computed in every location of detector window by

$$H = -\sum_{i=1}^{N} P_i \log P_i \tag{17}$$

where  $P_i$  is local contrast probability (14) associated with input sample  $x_i$ , The control rule of H detector is determined by the following formula:

IF 
$$P^* \ge \eta$$
 THEN median filter  
ELSE identity filter (18)

#### **3.6 LUMsm detector**

The name of LUMsm [7] detector follows from LUM smoothers [2,9], since the outputs for all smoothing levels are used as a base for detector decision:

IF 
$$Val \ge Tol$$
 THEN median filter  
ELSE identity filter (19)

where

$$Val = \sum_{\lambda}^{\lambda+2} \left| x^* - y_{\lambda} \right|$$
<sup>(20)</sup>

is a reduced sum of absolute differences between the central sample  $x^*$  and the outputs of LUM smoothers  $y_k$  for each possible value of tuning parameter k. The output of LUM smoother is given by

$$y_k = med\{x_{(k)}, x^*, x_{(N-k+1)}\}$$
 (21)

where  $x_{(k)}$  and  $x_{(N-k+1)}$  are lower and upper order statistics of the ordered set. In (19) *Tol* presents threshold (in the case of gray scale images, the optimal value is 60 for a lower noise corruption or 90 for a high corrupted images [7]) and for image sequences were used values 60 and 90.



Fig. 3 Used image sequence models: (a) Salesman - 5<sup>th</sup> frame (b) Salesman - 25<sup>th</sup> frame (c) Susie - 5<sup>th</sup> frame (d) Susie - 25<sup>th</sup> frame (e) People - 5<sup>th</sup> frame (f) People - 25<sup>th</sup> frame

Note, that in the case of I10 noise  $\lambda_{3x3} = 2$ ,  $\lambda_{1,9,1} = 3$ and  $\lambda_{9,9,9} = 6$  and threshold Tol = 60. For BW20 are considered  $\lambda_{3x3} = 3$ ,  $\lambda_{1,9,1} = 4$  and  $\lambda_{9,9,9} = 8$  and Tol = 90.

## **4.Experimental results**

To achieve the robustness of proposed methods, three dynamic image sequences of various details and the motion complexity (described in [10,11]). Every sequence consists of 30 frames. The used frames had resolution of 256x256 pixels with 8 bits/pixel gray-scale quantization.

These sequence models were corrupted by two types of the impulse noise with uniform distribution of impulses. The first one (Fig. 4a) is the impulse noise with variable random value (in case of 8 bit per pixels quantized image, the original value was replaced by random value between 0 and 255). Mathematically,

$$x(n,i,j) = \begin{cases} z & \text{with probability } p \\ o(n,i,j) & \text{with probability } 1-p \end{cases}$$
(22)

where x(n,i,j) is a corrupted signal, o(n,i,j) describes original signal, n, i, j are indices of sample location and z is random value (impulse) from <0,255> with probability p.

The second one type of the impulse noise is the socalled salt and pepper noise (Fig.4b) where pixels of the image were replaced by black and white pixels (values 0 or 255, separately). The noise model of salt and pepper noise is given by

$$x(n,i,j) = \begin{cases} 0 & \text{with probability } p_0 \\ 255 & \text{with probability } p_{255} \\ o(n,i,,) & \text{with probability } 1 - p_0 - p_{255} \end{cases}$$
(23)

where 0 denotes a white dot with a probability  $p_0$  and 255 describes a black dot with a probability  $p_{255}$ . Others are symbols are related to (22).

To evaluate the degree of damage or the performance of proposed architectures (impulse detector with 3x3 median filter) the following objective criteria such as mean absolute error (MAE), mean square error (MSE) and the cross correlation coefficient  $\Delta R$  were used. Since the image sequence is 3-D signal [17], in paper mentioned criteria are extended to the 3-D forms. Thus the 3-D MAE and 3-D MSE are given by

$$MAE = \frac{1}{TMN} \sum_{n=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} |o(n,i,j) - x(n,i,j)|$$
(24)

$$MSE = \frac{1}{TMN} \sum_{n=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{N} \left( o(n,i,j) - x(n,i,j) \right)^2 \quad , \qquad (25)$$

where o is the original image, x is the filtered (distorted) image, n is the temporal index (frame index), i and j are indices of image sample position. Variable T marks a number of frames, M and N denote the image dimension.

Both criteria well express the detail preservation (by MAE) and the noise suppression (by MSE). However, they do not yield the information about the motion dynamics. On that account was introduced [9] the cross correlation criterion  $\Delta R$  that evaluates the motion-details preservation.

$$\Delta R = \left| R^{o} - R^{x} \right| , \qquad (26)$$

where  $R^o$  and  $R^x$  are the statistical cross-correlations of the original and filtered sequence, respectively. Thus, the cross correlation of signal x is expressed as

$$R = \frac{1}{T} \sum_{n=1}^{T} \frac{\frac{1}{MN} \left| \sum_{i=1}^{M} \sum_{j=1}^{N} (x(n,i,j)x(n,i,j)) - E(n)E(n+1) \right|}{\sigma(n)\sigma(n+1)} , \qquad (27)$$

where

$$E(n) = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} x(n, i.j)$$
(28)

$$\sigma(n) = \sqrt{\frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \left( x(n, i, j) - E(n, i, j) \right)^2}$$
(29)

In previous equations E(n) represents the mean value of the  $n^{\text{th}}$  frame of the sequence,  $\sigma(n)$  is the standard deviation of the  $n^{\text{th}}$  frame.

The closer to one is the cross correlation coefficient the more static is the sequence [9,10]. It means that particular frames more resemble themselves; therefore the sequence contains less motion. Purpose of the filtration is to achieve the smallest difference of cross correlation coefficients between the original noise-free sequence and the filtered sequence, as defined by (24). Tab. 1 shows the motion complexity of used sequence models. From this table it is seen that sequence People is characterised by the largest motion. Other hand sequence Susie is the simplest model.

| Sequence | Salesman | Susie | People |
|----------|----------|-------|--------|
| R        | 0.979    | 0.983 | 0.878  |

Tab. 1 Motion evaluating of original sequences

Since MAE, MSE and  $\Delta R$  well evaluate the performance of an impulse detector along with a 3x3 median filter, there were needful the criteria for a quantification of lonely impulse detectors. On that account two criteria were introduced [15,16]. Thus, the first one evaluates impulse misclassification (MCL) and second one takes measures of successfully detected impulses (SCL). Mathematically:

$$MCL = \frac{\varepsilon_m}{MNT - \alpha} 100 \tag{30}$$

$$SCL = \frac{\alpha - \varepsilon_c}{\alpha} 100, \qquad (31)$$

where  $\varepsilon_m$  is a number of false detected impulses however noise free samples,  $\varepsilon_c$  is a number of not detected impulses,  $\alpha$  is a number of impulses in the sequence of *T* frames and a frame dimensions *M* and *N*.

In the evaluation 15 pixels around the border were not used. In like manner the first and last three frames were not considered. The pixel bypass around the border was on the ground of border effect [4, 10].

Tables 3-5 show performance of proposed impulse detectors. From these results it can be seen that impulse detectors with temporal windows distinguish by deficient impulse detection. Thus, temporal impulse detectors achieve the high MCL and the low SCL. On that account in the case of temporal detector window the worst results were obtained in term of MAE, MSE and  $\Delta R$ .

However, in case of spatial and spatiotemporal windows the excellent results were expected. Since many detection methods are based on the principle such as a mean value, a standard deviation, an entropy etc. the well exact estimates are performed from a larger input set. Thus, the spatial or spatiotemporal impulse detectors along with a 3x3 median filter well preserve signal details (include motion details) and remove outliers.

In case of 10% impulse noise with random value (denoted as 110 and shown in Fig. 4a) the best, excellent low MCL criteria was obtained by COSD and LUMsm detectors. Although LUMsm detector (Fig. 4c) does not make best SCL, balance between false and successfully detected impulses resulting to the best noise suppression and the detail preservation in the presence a 3x3 median filter.

If higher noise corruption (Fig. 4d) such as 20% salt & pepper noise (BW20 noise) is investigated the best SCL was obtained by spatiotemporal structures of LCP (Fig. 4f) and LUMsm detectors. In addition, SCL is close to value 100%. Similar to case of 110 noise, robust spatial and spatiotemporal LUMsm, COSD, H, SDV detectors markedly improve results achieved by 3x3 median filter (Tab. 6).

Provided results imply following: Precise impulse detection limits the filter use and thus it reduces blurring that is frequently introduced by inaccurate filter estimate (Fig. 4b, e). Note that principle of COSD and LUMsm detectors exclude possible use of temporal windows of 3 samples. Spatial and spatiotemporal structures were used, only.

| Noise    |       | I10   |       | BW20   |        |       |  |
|----------|-------|-------|-------|--------|--------|-------|--|
| Sequence | MAE   | MSE   | ∆R    | MAE    | MSE    | ∆R    |  |
| Salesman | 7.287 | 825.1 | 0.396 | 23.101 | 3539.3 | 0.764 |  |
| Susie    | 6.738 | 688.4 | 0.337 | 23.021 | 3270.8 | 0.741 |  |
| People   | 7.069 | 772.8 | 0.352 | 22.473 | 3351.7 | 0.680 |  |

 Tab. 2 Evaluating of noised sequences



Fig. 4 Salesman - 5<sup>th</sup> frame (a) Original frame corrupted by I10 noise (b) I10 noise filtered by 3x3 median (c) I10 filtered by ST<sub>191</sub> LUMsm detector + 3x3 median filter (d) Original frame corrupted by BW20 (e)BW20 filtered by 3x3 median (f) BW20 filtered by ST<sub>999</sub> LCP detector + 3x3 median filter

| No       | ise                        |        | I10     |        |       |       |         |         | BW20   |       |       |
|----------|----------------------------|--------|---------|--------|-------|-------|---------|---------|--------|-------|-------|
| Met      | IethodDetectorDetector + 3 |        | r + 3x3 | median | Dete  | ector | Detecto | r + 3x3 | median |       |       |
| Detector | Window                     | MCL    | SCL     | MAE    | MSE   | ∆R    | MCL     | SCL     | MAE    | MSE   | ∆R    |
|          | Т3                         | 42.291 | 84.223  | 2.970  | 115.5 | 0.040 | 37.625  | 75.471  | 7.425  | 761.7 | 0.247 |
| F        | 3x3 (S)                    | 2.814  | 62.705  | 2.174  | 139.6 | 0.086 | 1.183   | 69.558  | 5.673  | 517.9 | 0.247 |
| Ľ        | $ST_{1,9,1}$               | 1.882  | 58.067  | 2.292  | 159.7 | 0.098 | 0.673   | 65.403  | 6.167  | 563.6 | 0.258 |
|          | ST <sub>9,9,9</sub>        | 0.177  | 35.067  | 3.671  | 309.4 | 0.181 | 0.015   | 51.655  | 7.938  | 728.6 | 0.287 |
|          | Т3                         | 47.167 | 88.777  | 2.921  | 92.2  | 0.029 | 41.357  | 79.814  | 6.833  | 682.7 | 0.208 |
| SDV      | 3x3 (S)                    | 11.717 | 80.790  | 2.027  | 56.2  | 0.020 | 4.936   | 91.147  | 2.461  | 99.1  | 0.053 |
| SDV      | $ST_{1,9,1}$               | 8.038  | 80.456  | 1.553  | 42.4  | 0.018 | 2.735   | 90.764  | 2.179  | 83.4  | 0.045 |
|          | ST <sub>9,9,9</sub>        | 3.626  | 78.240  | 1.398  | 38.6  | 0.013 | 0.328   | 90.675  | 1.960  | 69.1  | 0.037 |
|          | 3x3 (S)                    | 0.460  | 67.456  | 1.277  | 39.8  | 0.020 | 2.206   | 93.000  | 2.147  | 84.0  | 0.044 |
| COSD     | $ST_{1,9,1}$               | 0.142  | 67.797  | 1.124  | 31.6  | 0.018 | 1.437   | 93.168  | 1.982  | 75.8  | 0.040 |
|          | ST <sub>9,9,9</sub>        | 0.353  | 68.667  | 1.189  | 34.7  | 0.016 | 0.470   | 94.474  | 1.775  | 61.3  | 0.029 |
|          | Т3                         | 49.314 | 90.026  | 2.944  | 86.8  | 0.028 | 42.979  | 81.083  | 6.768  | 675.6 | 0.204 |
| ICP      | 3x3 (S)                    | 17.907 | 85.543  | 2.387  | 56.7  | 0.015 | 8.056   | 99.008  | 2.181  | 70.9  | 0.032 |
| LCI      | $ST_{1,9,1}$               | 13.845 | 86.215  | 1.917  | 44.3  | 0.012 | 5.101   | 99.360  | 1.819  | 57.1  | 0.027 |
|          | ST <sub>9,9,9</sub>        | 9.734  | 86.806  | 1.844  | 43.0  | 0.006 | 1.661   | 99.906  | 1.568  | 49.5  | 0.022 |
|          | Т3                         | 44.330 | 88.466  | 2.874  | 93.1  | 0.029 | 38.941  | 78.030  | 7.136  | 735.4 | 0.184 |
| Н        | 3x3 (S)                    | 11.782 | 80.090  | 1.996  | 55.8  | 0.021 | 4.896   | 88.427  | 2.745  | 124.9 | 0.068 |
|          | $ST_{1,9,1}$               | 8.198  | 79.800  | 1.536  | 42.1  | 0.018 | 2.761   | 87.466  | 2.545  | 113.5 | 0.062 |
|          | ST <sub>9,9,9</sub>        | 3.641  | 77.806  | 1.388  | 38.4  | 0.013 | 0.304   | 86.347  | 2.368  | 96.2  | 0.051 |
|          | 3x3 (S)                    | 0.233  | 74.419  | 1.005  | 30.7  | 0.017 | 0.143   | 98.687  | 1.421  | 49.4  | 0.027 |
| LUMsm    | $ST_{1,9,1}$               | 0.116  | 78.183  | 0.811  | 18.9  | 0.009 | 0.418   | 96.861  | 1.703  | 71.1  | 0.039 |
|          | $ST_{9,9,9}$               | 0.087  | 76.938  | 0.848  | 21.4  | 0.011 | 0.073   | 99.445  | 1.340  | 43.5  | 0.023 |

Tab. 3 Evaluating of filtered sequence Salesman

| No       | ise                 | I10    |        |         |         |        | BW20                 |        |         |        |       |  |
|----------|---------------------|--------|--------|---------|---------|--------|----------------------|--------|---------|--------|-------|--|
| Met      | hod                 | Dete   | ector  | Detecto | r + 3x3 | median | an Detector Detector |        | r + 3x3 | median |       |  |
| Detector | Window              | MCL    | SCL    | MAE     | MSE     | ∆R     | MCL                  | SCL    | MAE     | MSE    | ∆R    |  |
|          | Т3                  | 22.738 | 80.728 | 1.826   | 83.9    | 0.028  | 19.538               | 75.786 | 6.303   | 690.9  | 0.205 |  |
| F        | 3x3 (S)             | 2.620  | 64.945 | 1.884   | 110.8   | 0.064  | 1.117                | 70.010 | 6.025   | 595.5  | 0.249 |  |
| L        | $ST_{1,9,1}$        | 1.468  | 59.037 | 2.094   | 135.0   | 0.077  | 0.511                | 65.911 | 6.648   | 661.5  | 0.264 |  |
|          | ST <sub>9,9,9</sub> | 0.132  | 35.177 | 3.397   | 261.2   | 0.146  | 0.009                | 50.995 | 8.889   | 878.5  | 0.289 |  |
|          | Т3                  | 29.977 | 86.858 | 1.821   | 60.7    | 0.016  | 24.993               | 82.109 | 5.427   | 579.2  | 0.155 |  |
| SDV      | 3x3 (S)             | 11.265 | 83.608 | 1.458   | 29.7    | 0.008  | 4.554                | 96.356 | 1.554   | 56.4   | 0.027 |  |
| SDV      | $ST_{1,9,1}$        | 8.536  | 82.654 | 1.262   | 25.7    | 0.007  | 2.712                | 96.874 | 1.344   | 43.4   | 0.020 |  |
|          | ST <sub>9,9,9</sub> | 2.994  | 80.772 | 0.927   | 18.4    | 0.005  | 0.139                | 97.493 | 1.091   | 30.0   | 0.013 |  |
|          | 3x3 (S)             | 0.125  | 67.732 | 0.985   | 25.3    | 0.012  | 1.166                | 97.901 | 1.217   | 40.6   | 0.018 |  |
| COSD     | $ST_{1,9,1}$        | 0.080  | 67.889 | 0.961   | 24.0    | 0.012  | 1.022                | 98.071 | 1.172   | 38.6   | 0.017 |  |
|          | ST <sub>9,9,9</sub> | 0.105  | 68.601 | 0.943   | 23.0    | 0.011  | 0.133                | 98.329 | 1.046   | 28.7   | 0.012 |  |
|          | Т3                  | 33.905 | 88.409 | 1.892   | 56.2    | 0.015  | 27.986               | 82.930 | 5.435   | 574.5  | 0.152 |  |
| ICP      | 3x3 (S)             | 17.343 | 88.139 | 1.708   | 27.9    | 0.003  | 7.150                | 99.248 | 1.460   | 38.0   | 0.014 |  |
| LUI      | $ST_{1,9,1}$        | 14.445 | 88.265 | 1.501   | 23.8    | 0.003  | 4.741                | 99.544 | 1.276   | 31.5   | 0.011 |  |
|          | ST <sub>9,9,9</sub> | 8.776  | 89.261 | 1.234   | 19.2    | 0.002  | 0.896                | 99.801 | 1.036   | 25.9   | 0.010 |  |
|          | Т3                  | 29.890 | 86.480 | 1.853   | 62.7    | 0.017  | 24.950               | 80.770 | 5.679   | 610.7  | 0.143 |  |
| Н        | 3x3 (S)             | 11.539 | 82.949 | 1.462   | 30.3    | 0.009  | 4.678                | 92.642 | 2.066   | 101.8  | 0.051 |  |
|          | $ST_{1,9,1}$        | 8.860  | 81.848 | 1.278   | 26.7    | 0.008  | 2.816                | 92.642 | 1.911   | 91.5   | 0.045 |  |
|          | ST <sub>9,9,9</sub> | 3.140  | 80.048 | 0.950   | 19.2    | 0.005  | 0.138                | 94.330 | 1.466   | 58.4   | 0.028 |  |
|          | 3x3 (S)             | 0.048  | 76.813 | 0.718   | 16.3    | 0.007  | 0.113                | 97.789 | 1.148   | 43.0   | 0.021 |  |
| LUMsm    | $ST_{1,9,1}$        | 0.051  | 80.064 | 0.618   | 11.0    | 0.004  | 0.058                | 98.688 | 1.019   | 29.9   | 0.013 |  |
|          | ST <sub>9,9,9</sub> | 0.023  | 79.631 | 0.618   | 11.3    | 0.004  | 0.011                | 98.895 | 0.981   | 26.2   | 0.011 |  |

Tab. 4 Evaluating of filtered sequence Susie

| No       | ise                 | I10    |        |                       |       |       | BW20     |        |         |        |       |
|----------|---------------------|--------|--------|-----------------------|-------|-------|----------|--------|---------|--------|-------|
| Method   |                     | Dete   | ector  | Detector + 3x3 median |       | Dete  | Detector |        | r + 3x3 | median |       |
| Detector | Window              | MCL    | SCL    | MAE                   | MSE   | ∆R    | MCL      | SCL    | MAE     | MSE    | ∆R    |
|          | Т3                  | 22.245 | 73.290 | 2.811                 | 121.3 | 0.015 | 19.260   | 73.719 | 7.185   | 747.3  | 0.177 |
| F        | 3x3 (S)             | 2.663  | 62.062 | 2.297                 | 133.6 | 0.066 | 1.175    | 70.191 | 5.812   | 513.4  | 0.210 |
| L        | $ST_{1,9,1}$        | 1.446  | 56.204 | 2.448                 | 156.9 | 0.079 | 0.528    | 65.976 | 6.278   | 558.9  | 0.217 |
|          | ST <sub>9,9,9</sub> | 0.204  | 34.110 | 3.666                 | 294.0 | 0.155 | 0.019    | 52.120 | 7.991   | 719.3  | 0.234 |
|          | Т3                  | 33.042 | 82.346 | 3.012                 | 93.4  | 0.008 | 28.155   | 79.857 | 6.744   | 656.2  | 0.132 |
| עמא      | 3x3 (S)             | 12.669 | 80.740 | 2.397                 | 59.0  | 0.004 | 5.666    | 94.088 | 2.561   | 92.9   | 0.025 |
| SDV      | $ST_{1,9,1}$        | 9.714  | 79.736 | 2.113                 | 52.0  | 0.008 | 3.537    | 94.355 | 2.289   | 79.6   | 0.017 |
|          | ST <sub>9,9,9</sub> | 5.660  | 77.715 | 1.724                 | 43.0  | 0.011 | 0.641    | 96.002 | 1.777   | 54.8   | 0.010 |
|          | 3x3 (S)             | 0.322  | 66.845 | 1.312                 | 37.9  | 0.010 | 1.834    | 96.855 | 1.963   | 67.7   | 0.018 |
| COSD     | $ST_{1,9,1}$        | 0.240  | 67.054 | 1.264                 | 35.2  | 0.007 | 1.548    | 97.255 | 1.881   | 63.5   | 0.013 |
|          | ST <sub>9,9,9</sub> | 0.807  | 68.073 | 1.340                 | 37.4  | 0.002 | 0.921    | 98.167 | 1.707   | 50.7   | 0.004 |
|          | Т3                  | 37.892 | 84.548 | 3.166                 | 88.7  | 0.011 | 32.433   | 81.631 | 6.771   | 646.4  | 0.126 |
| ICP      | 3x3 (S)             | 20.052 | 85.563 | 2.936                 | 62.2  | 0.015 | 9.818    | 99.206 | 2.581   | 71.6   | 0.006 |
| LUI      | $ST_{1,9,1}$        | 17.479 | 85.496 | 2.694                 | 56.5  | 0.021 | 7.334    | 99.532 | 2.315   | 62.5   | 0.005 |
|          | ST <sub>9,9,9</sub> | 15.185 | 85.771 | 2.452                 | 51.3  | 0.027 | 3.370    | 99.853 | 1.905   | 52.1   | 0.004 |
|          | Т3                  | 33.113 | 81.856 | 3.024                 | 95.6  | 0.007 | 28.134   | 78.150 | 7.033   | 699.4  | 0.116 |
| Н        | 3x3 (S)             | 12.482 | 79.996 | 2.356                 | 58.8  | 0.003 | 5.512    | 90.368 | 2.956   | 129.5  | 0.045 |
| 11       | $ST_{1,9,1}$        | 9.540  | 78.917 | 2.081                 | 52.0  | 0.006 | 3.404    | 90.122 | 2.739   | 118.4  | 0.037 |
|          | ST <sub>9,9,9</sub> | 0.512  | 77.168 | 1.713                 | 43.1  | 0.010 | 0.570    | 92.106 | 2.145   | 81.3   | 0.022 |
|          | 3x3 (S)             | 0.281  | 73.592 | 1.128                 | 31.5  | 0.006 | 0.426    | 96.746 | 1.823   | 67.8   | 0.019 |
| LUMsm    | $ST_{1,9,1}$        | 0.530  | 76.793 | 1.088                 | 27.5  | 0.003 | 0.441    | 97.972 | 1.694   | 54.1   | 0.008 |
|          | ST <sub>9,9,9</sub> | 0.538  | 74.906 | 1.120                 | 30.2  | 0.003 | 0.388    | 98.147 | 1.621   | 48.6   | 0.005 |

| Tab 5 | Evaluating | of filtered | sequence | People  |
|-------|------------|-------------|----------|---------|
| 100.0 | Lvaluating | or microu   | Sequence | i copic |

| Noise    |       | I10  |       | BW20  |       |       |  |
|----------|-------|------|-------|-------|-------|-------|--|
| Sequence | MAE   | MSE  | ∆R    | MAE   | MSE   | ∆R    |  |
| Salesman | 4.097 | 64.3 | 0.003 | 4.766 | 106.7 | 0.032 |  |
| Susie    | 3.097 | 30.9 | 0.006 | 3.541 | 58.7  | 0.012 |  |
| People   | 5.161 | 76.7 | 0.038 | 5.729 | 113.8 | 0.014 |  |

Tab. 6 Evaluating of 3x3 median filter

## **5.**Conclusion

Proposed structures that include an impulse detector and a median filter for dynamic noised image sequences were proved and successfully tested. Thus, impulse noise is removed and signal-details are preserved, since the filter is applied in the case of impulse detection, only. Obtained results showed that the three dimensional structures of impulse detectors achieved the excellent precision.

## Acknowledgement

The work presented in this paper was supported by the Grant Agency of the Ministry of Education and Academy of Science of the Slovak Republic VEGA under Grant No.1/5241/98.

## References

- ABREU, E., LIGHSTONE, M., MITRA, S. K., ARAKAWA, K.: A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images. IEEE Transactions on Image Processing, vol. 5, no. 6, June 1996, pp. 1012-1025.
- [2] ARCE, G. R.: Mulstistage Order Statistic Filters for Image Sequence Processing. IEEE Transactions on Signal Processing, vol. 39, no. 5, May 1991, pp. 1146-1163.
- [3] BEGHDADI, A., KHELLAF, A.: A Noise-Filtering Method Using a Local Information Measure, IEEE Transactions on Image Processing, vol. 6, no. 6, June 1997, pp. 879-882.
- [4] JAROSLAVSKIJ, L. BAJLA, I.: Metódy a systémy číslicového spracovania obrazov. Alfa - Vydavateľstvo technickej a ekonomickej literatúry, Bratislava, 1989.
- [5] KLEIHORST, R. P., LAGENDIJK, R. L., BIEMOND, J.: Noise Reduction of Image Sequences Using Motion Compensation and Signal Decomposition. IEEE Transactions on Image Processing, vol. 4, no. 3, March 1995, pp. 274-284.
- [6] LUKÁČ, R.: Impulse Detection by Entropy Detector (H Detector). Journal of Electrical Engineering, vol. 50, no. 9-10, November 1999, pp. 310-312.
- [7] LUKÁČ, R. MARCHEVSKÝ, S.: Threshold Impulse Detector Based on LUM Smoother (LUMsm Detector), Journal of Electrical Engineering, vol. 51, no. 1-2, 2000, pp. 44-47.
- [8] LUKÁČ, R., MACEKOVÁ, Ľ., MARCHEVSKÝ, S.: Order Statistic Filters in Dynamic Image Sequences Corrupted by Impulse Noise. In: Proceedings of the 4th International Conference DIGITAL SIGNAL PROCESSING '99, Technical University of Košice (Slovakia), 1999, pp. 50-53.

- [9] LUKÁČ, R., STUPÁK, CS., MARCHEVSKÝ, S., MACEKOVÁ, L.: Order-Statistic Filters in Dynamic Image Sequences. Radioengineering, vol. 9, no. 3, September 2000, pp. 8-14.
- [10] LUKÁČ, R, STUPÁK, CS., MARCHEVSKÝ, S.: Neural Networks for Noised Dynamic Image Sequences. Journal of Electrical Engineering, submitted.
- [11] MACEKOVÁ, Ľ., MARCHEVSKÝ, S.: Noisy Dynamic Image Sequences Filtering Based on Order Statistic Filters. In: Proceedings of DSP '97 3rd International Conference on Digital Signal Processing, Herl'any (Slovakia), 1997, pp. 274-278.
- [12] MARCHEVSKÝ, S., DRUTAROVSKÝ, M., CHOMAT, O.: Iterative Filtering of Noisy Images by Adaptive Neural Network Filter. In: Proceedings of the Conference New trends in signal processing I, Liptovský Mikuláš, 1996, pp. 118-121.
- [13] STUPÁK, CS.: Digital Image Filtration Based on Local Statistics. 3rd International Scientific Conference Elektro '99, Žilina, May 25-26 1999, pp.106-111.
- [14] STUPÁK, CS.: Neural Impulse Detector. In: Proceedings of International Conference NEW TRENDS IN DIGITAL SIGNAL PROCESSING V, Liptovský Mikuláš (Slovakia), 2000, pp. 323-326.
- [15] STUPÁK, CS., LUKÁČ, R.: Impulse Detection in Grayscale Images. In: Proceedings of the 4th International Conference DIGITAL SIGNAL PROCESSING '99, Technical University of Košice (Slovakia), 1999, pp. 96-99.
- [16] STUPÁK, CS., LUKÁČ, R., MARCHEVSKÝ, S.: Utilization of the Impulse Detectors in the Grayscale Image Filtering. Journal of Electrical Engineering, vol. 51, no. 7-8, 2000, pp. 173-181.
- [17] VIERO, T., NEUVO, Y.: 3-D Median Structures for Image Sequence Filtering and Coding, Tampere University of Technology, Finland.

#### About authors...

**Rastislav LUKÁČ** received the Ing. degree at the Technical University of Košice, Slovak Republic, at the Department of Electronics and Multimedial Communications in 1998. Currently, he is Ph.D. student at the Department of Electronics and Multimedial Communications at Technical University of Košice. His research interest includes image filtering, impulse detection, neural network and permutations.