
10 P. KOSTKA, Z. ŠKVOR, MICROWAVE-CIRCUIT OPTIMIZATION WITH PARALLEL ENHANCED FAST MESSY …

Microwave-Circuit Optimization with Parallel Enhanced
Fast Messy Genetic Algorithm (pefmGA)

Pavel KOSTKA, Zbyněk ŠKVOR

Dept. of Electromagnetic Field, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic

xkostka@fel.cvut.cz, skvor@fel.cvut.cz

Abstract. Fast messy genetic optimization is found suit-
able for complex microwave circuit design. Increase in
computation speed is achieved using several ordinary
computers connected to a network. Calculations are run-
ning on background so that computers can be used for
other purposes at the same time. Dynamic change of
bounds, search space segmentation and gradient incorpo-
ration have significantly improved convergence rate. The
new method has found global minimum in each run, while
classic methods failed for some starting points.

Keywords
Optimization, genetic optimization, messy, radiofre-
quency circuits.

1. Introduction
Microwave circuit design relies on Computer Aided

Design (CAD) tools. Contemporary software packages
allow optimization of circuit performance using so-called
standard methods. However powerful, these methods re-
quire a good estimation of starting point, and provide for
optimization in narrow variable bounds. What’s more, the
higher frequency is, the more parasitic elements must be
taken into account.

As an example, consider an equivalent circuit of a mi-
crowave transistor BF405 (produced by Infineon) – see
Fig. 1. Sub-circuit bounded by A-B-C points stands for just
pure chip and a few parasitic inductances and capacitances
that correspond to 3 bond wires between the chip and pads
of transistor box.

Such circuit is fully sufficient at low frequencies and
can as such be used as a model in Spice or other simula-
tors. Unfortunately, with increasing frequencies the model
doesn’t seem so ideal – one needs to include much more
parasitic effects. The whole Fig. 1 shows the equivalent
circuit usable for frequencies above approx. 1,07 GHz
(phase error > 5°, amplitude error > 0,05). As you can see,
there are 12 another parasitic elements. In order to extract
equivalent circuit parameters from measured transistor

characteristics, all of these are expected to be the subject of
further optimization process.

Efficiency of common types of algorithms falls rap-
idly down with the rising size of such search space (looser
variable bounds). Many of them are almost incapable to
find an acceptable solution in reasonable time.

Fig. 1. Equivalent circuit of microwave transistor BF405

The above mentioned arguments led designers to the new
groups of algorithms, such as neural networks, ant colony
systems or genetic algorithms (GAs). The last group – GAs
– went through the stormy development in the last thirty
years.

Goldberg laid the foundation of this scientific field in
1989 [5]. He introduced evolutionary strategy, population
breading and basic genetic cycle. All together this is called
simple genetic algorithm (sGA).

sGA is nowadays widely spread and many scientists
used it for solving general as well as specific types of op-
timization problems. However effective sGA is, it suffers
from many lacks. Poor defense against local minimum fall
and unconstrained number of fitness evaluation cycles are
the most serious ones. Parallel enhanced fast messy genetic
algorithm (pefmGA) sufficiently deals with these
disadvantages and altogether with parallel processing it is
capable of enlarging the search space many times in
comparison with common sGA.

RADIOENGINEERING, VOL. 12, NO. 2, JUNE 2003 11

2. Algorithm Description
The basic idea comes from the works involving messy

and fast messy GA [3,5] and from the project of searching
extraterrestrial intelligence (seti@home) [6]. The algorithm
has been enriched with some features that significantly
improve convergence and extend the search space. Com-
mon personal computers at network have been used to
distribute computation so that whole process would be
faster.

2.1 Messy GAs
All messy GA (mGA) clones incorporate so-called

messy representation of chromosomes. Gene position is no
longer fixed – mGA relaxes such interconnection. In order
to identify a particular gene we denote it by a pair of
(allele, locus). Locus is simply the position of allele within
chromosome and allele represents value (typically binary
digit 0 or 1). For example, chromosome 1011 can be re-
typed into messy code as four-pair string ((1,1) (2,0) (3,1)
(4,1)) or equally according to the Fig. 2.

Fig. 2. Messy representation of a chromosome

Common crossover operation was replaced by a couple cut
& splice. Even one can guess that these operations do the
same as crossover does in sGA, it’s a little bit more com-
plicated. First, each operation can occur during the itera-
tion cycle only with the some probability: each chromo-
some starts with a length λ, where λ<l (see section 2.3) so
that at the beginning it is more probable that splice will
occur; as soon as lengths of strings reach a constant cut,
will be engaged. Second, these operations can produce
chromosomes of different length. Fig. 3 just describes such
case – chrom A consists of three genes, chrom B of nine
genes. The first one is too short and let’s say, that cut will
not occur; the latter is (again – let’s say) long enough and
operation cut will occur. Splice operation produces off-
spring: the1st one consists of whole chrom A and the left
half of chrom B, the second is only a copy of chrom B.

Fig. 3. Cut and splice operation

Fig. 4 proves the prime advantage of such representation
(reprinted from [3]). Let us imagine a building block [4]
1***1. Suppose that left and right ones define some good

property of an individual. Comparing sGA to mGA opera-
tions one can see that: while one-point crossover disrupts
the block, mGA preserves it.

1***1 Good building block:

sGA: 10001
00000
one-point crossover

10000
00001(BB disrupted)

mGA:

(1,1)(5,1)(2,0)(3,0)(4,0)

cut & splice

(BB preserved)

(1,0)(2,0)(3,0)(4,0)(5,0)

(1,1)(5,1)(2,0)(3,0)(5,0)
(1,0)(2,0)(3,0)(4,0)(3,0)(4,0)

Fig. 4. Demonstration of messy representation advantage

2.2 Template Deployment
Relaxed locus brings another new feature: some genes

in a chromosome can be included more than once (over-
specification) and another not at all (under-specification).
Over-specification is managed by left-to-right scan so that
the first element is taken into account and others are ig-
nored. Under-specification is rather worse: missing genes
must be supplied from another source. We can generate it
at random or – and it’s much better – fill it out from a tem-
plate.

CH mGA: ((3,1)(2,0)(4,1)(1,1))

1 1 01 CH sGA:

 messy
chrom:

1

(3,1) (2,0) (4,1) (6,0) (7,1) (10,0) (11,0)

0 1 1 0 0 1 1 1 0 0

1 0 0 0 1 1 01101

 chrom.
structure:

template:

Fig. 5. Under- and over-specification

2.3 FmGA Sketch
Fig. 6 presents algorithm iteration loop. It consists of

inner and outer loops. The inner loop performs two phases,
so-called: primordial and juxtapositional. At the end of the
primordial phase, the best-found individual is preset as the
template for the next lap.

((2,1) (6,0) (4,1)) Chrom A:
Chrom B: ((4,0) (1,1) (5,1) (4,0) (2,0) (8,1) (1,0) (2,1) (3,0))

POS

1st of offspring : ((2,1) (6,0) (4,1) (1,0) (2,1) (3,0))

Probabilistically complete initialization [3] is done
during primordial stage: first of all, a population is gener-
ated at random; gradually deletion of some genes follows
so that λ-long building blocks would be constructed (of l-
long problem, where l>λ). Coefficient λ is increased with
the rising number of generation, thus the amount of genes

((4,0) (1,1) (5,1) (4,0) (2,0) (8,1) (1,0) (2,1) (3,0)) 2nd of offspring:

12 P. KOSTKA, Z. ŠKVOR, MICROWAVE-CIRCUIT OPTIMIZATION WITH PARALLEL ENHANCED FAST MESSY …

filled from the template goes down. Fig. 7 presents an
example of such initialization (reprinted from [4]).

Fig. 6. Conception of mGA

 (2,0)(3,0) (5,0)(6,0) (9,0)(10,0) ?
 (2,1)(3,0)(4,0)(5,1) (7,1) (9,1) ?
(1,0)(2,0) (5,0)(6,0) (8,0)(9,0) ?
(1,0)(2,0) (4,0)(5,0) (7,0) (10,0) ?

Fig. 7. Probabilistically complete initialization

Juxtapositional phase iterates with cut & splice
operations, mutation (that’s the same as in sGA is) and
selection and fitness function (FF) evaluation. Selection
(tournament) is enriched with thresholding idea: two
chromosomes can fight with each other only if they have
some amount of genes in common. Random selection is
used otherwise.

2.4 Conception of pefmGA
Four important features have been added to fmGA

algorithm to speed up and sharpen convergence:
(a) search space segmentation,
(b) mapping with dynamically changed bounds,
(c) parallel processing,
(d) gradient method incorporation.

2.5 Search Space Segmentation
Even the best algorithm has upper bounded search

space so that above such limits a (global) solution can’t
reliably find. If the search space consists of n-dimensional
(n-D) cube (where n- is number of variables) we can split
the cube into some amount of smaller n-D sub-cubes so
that they all together make up the original space. Fig. 8
illustrates a very easy example of 1-D area. Note that sub-

intervals are slightly overlapped. It helps to find a solution
located near their borders.

 Outer cycle

Inner cycle

template setting (nth+1 lap)

juxtapositional phase

primordial phase

nth ring initialization

2nd subinterval

..............1st subinterval 3rd subinterval

 variable A

Fig. 8. 1-D search space division

The next figure (Fig. 9) then mentions the same procedure
in 3-D space.

variable B

variable C

subinterval A-B-C

After the end of selection

After gene deletion...

(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 7
(1,0)(2,1)(3,0)(4,0)(5,1)(6,0)(7,1)(8,1)(9,1)(10,1) 3
(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 2
(1,0)(2,1)(3,1)(4,1)(5,0)(6,0)(7,1)(8,0)(9,1)(10,0) 5

Population
(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 7
(1,0)(2,1)(3,0)(4,0)(5,1)(6,0)(7,1)(8,1)(9,1)(10,1) 3
(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 2
(1,0)(2,1)(3,1)(4,1)(5,0)(6,0)(7,1)(8,0)(9,1)(10,0) 5

FF values

va
ria

bl
e

A

Fig. 9. 3-D search space division

2.6 Mapping & Dynamically Changed
Bounds
Implementation of any genetic algorithm brings one

more fundamental issue – the number of bits per one vari-
able. It’s obvious that the more bits (alleles per gene) we
take, the finer granularity we obtain and the better chance
to discover a solution we have. On the other hand, the
greater a chromosome is, the larger the population must be
and the more time its evaluation will take. What’s more,
however fine the granularity is, it can’t ensure that the right
solution might be discovered (it can simply lie between
two samples).

These reasons were the main motivation to re-make
the representation of variable in chromosome. Imagine
some fixed length of alleles per variable independently on
the number of its bound. Let’s denote the minimum of the
bound as MING and maximum as MAXG (watch Fig. 10).
After the first iteration, a minimum “A” is discovered. The
change of interval follows so that the new one (specified

RADIOENGINEERING, VOL. 12, NO. 2, JUNE 2003 13

by MINN and MAXN) is half of the original one and mini-
mum A lies in its center.

Fig. 10. Change of bounds

Such technique can either converge to the solution or
diverge. Typical branch and bound algorithm in case of
divergence executes rollback operation. Nevertheless our
goal is not to walk through search space in this way –
that’s the GA business. Such changes are performed only
few times and solely in the second half of outer cycle at the
moment, if no important FF improvement for longer time
occurs.

2.7 Parallel Processing
Our parallel engine is based on traditional client-

server architecture – see Fig.11. Server starts the whole
optimization by splitting n-D search space into particular
subspaces and subsequently saving them into computation
stack. Then it informs efmGA clients about the beginning
process and waits for their initialization. After a while, it
distributes particular subspaces among clients, launches
computations and collects results. Server does it until it
gets stack empty. If some client doesn’t respond within a
timeout, its task is redistributed to another one, so that
integrity is preserved.

Fig. 11. Conception of pefmGA

2.8 Gradient Incorporation
Experiments with GA methods have shown an inter-

esting fact (see Fig 12): the time needed for discovery of an
estimated position of global minimum of FF (i.e. move-
ment from point A to point B) for let’s 1-D array (variable
x) is fully comparable with the time, that GA needs to fall
into point C (i.e. movement from point B to point C).
While the coarse tuning of FF (A→B) is the typical GA

task, the fine tuning (B→C) can be much more efficiently
done by some gradient method (provided starting point
were correctly set). This idea led to the implementation of a
gradient client (see Fig. 11), which performs fine optimi-
zations of pefmGA results.

Interval before change of bounds

A

MAXNMINN

MAXGMING

FFMAX

FFMIN

variable x

FF
(x

)

global minimum

A B

C

B
detail (fine tuning)

coarse tuning

Interval after changing the bounds

Fig. 12. Gradient incorporation

3. Results

3.1 Benchmark Task
On the contrary to common optimization, where

purely defined NP-hard problems (for example TSP) are
used as standardized benchmarks, microwave optimization
field hasn’t established such tasks yet. The presented task
is one of tricky ones and (as will be demonstrated further)
almost all “classic” methods are running into problems if
used to find its suitable solution within wider bounds.

3-D vertical stub, positioned on a microstrip line was
published in [7] – see Fig 13. Such a stub is nowadays
widely used as capacitor, especially as a DC block.

clients

efmGAN efmGA3 efmGA2

server gradient client

efmGA1

computation
stack

Fig. 13. Radial stub

Detail structure analysis leads to the decomposition into
even and odd modes. Let’s consider just the odd mode
equivalent circuit, as shown in Fig 14. There are 8 pa-
rameters (even mode has up to 9 parameters), whereas TL2
represents transmission line with nonlinear dependence of
εR and Z0.

The subtraction of measured and computed matrixes
of circuit scattering parameters is the ordinary method of
fitting values to some measured data (based on prior

14 P. KOSTKA, Z. ŠKVOR, MICROWAVE-CIRCUIT OPTIMIZATION WITH PARALLEL ENHANCED FAST MESSY …

knowledge of equivalent circuit topology). Circuit ele-
ments are optimized in order to minimize difference be-
tween measured and calculated values. The same method
has been used within this benchmark test. That means that
zero amplitude (and phase) indicates exact matching. Prac-
tically used circuits don’t need absolute match correspon-
dence but it must be better than a value.

Almost all of these methods are described in [8]. We
have selected wide optimization bounds for each variable
so that many local minima are presented in search space.
Tab. 2 illustrates chosen bounds.

L2 50p ~ 500p TL2 2.5m ~ 4m

C4 100f ~ 1p R0 10 ~ 100

C3 10f ~ 300f L0 100p ~ 2n

L3 10p ~ 300p C0 2f ~ 20f

Tab. 2. Bounds of variables

Each method has started five times. Tab. 3 sums summa-
rized obtained best and average results. Time specification
(specified in seconds) depends on the processor perform-
ance (these ones corresponds to AMD-KII@800MHz,
2507MIPS, 1003MFLOPS) and is mentioned rather for
comparision. Fig. 14. Odd mode of radial stub decomposition

To better authors’ published results was obviously our first
goal. Fig. 15 compares the amplitude of original results
(sGA optimization, Gaussian mutation – 20%, 60
individuals in population size, Microwave office) and
pefmGA results. The bounds were deliberately set very
strictly to prevent from premature finish of optimization.
Shadow triangles graphically present the goals.

 Best simulation Average simulation

Method FF eval time FF FF eval time FF

pow 405 5 14.69 405 5 14.69

varMet 181 1 14.69 181 1 14.69

stDesc 15361 90 14.67 15361 90 14.67

box 11715 52 0.050 11425 64 0.070

sGA 22135 31 0.055 25024 40 0.060

efmGA 40000 120 0.339 40000 120 0.683

efmGA+grad 42402 125 0.054 43485 127 0.065

Tab. 3. First interval results

Fig. 16 compares the results. Methods pow, varMet and
stDesc are not plotted because they were not able to
improve starting FF value at all. As you can see, raw
efmGA results seem a little bit worse than others (although
the comparison of FF (box=0.05, efmGA=0.339 versus
stDesc=14.67) doesn’t show out such dramatic difference).
That’s the reason why gradient method has been
incorporated.

Fig. 15. Comparision of sGA and pefmGA results

3.2 Algorithm Comparison

Although the previous graph exposed that pefmGA
achieved better results, one must perform a little bit more
sophisticated confrontation to prove that pefmGA is more
effective than others. Let’s try optimization with the most
often used methods (Tab. 1 sums them up).

 Abbreviation

Powell pow

variable metrics varMet

steepest descent stDesc

Box box

sGA sGA

efmGA efmGA

efmGA+gradient method efmGA+grad

Fig. 16. Graphical comparison

To be able to demonstrate the power of the presented
algorithm, substantially wider search space has been used
(see Tab. 4). The first four variable bounds have been
enlarged – each by two decades. Tab. 1. Methods used for comparison

RADIOENGINEERING, VOL. 12, NO. 2, JUNE 2003 15

4. Conclusion

L2 50p ~ 50000p TL2 2.5m ~ 4m

C4 100f ~ 100p R0 10 ~ 100

C3 10f ~ 30000f L0 100p ~ 2n

L3 10p ~ 30000p C0 2f ~ 20f

Parallel enhanced fast messy genetic optimization is a
promising method found suitable for complex microwave
circuit design. High computational load can be overcome at
nearly no cost using several ordinary computers connected
to a network. Running calculations on background enable
other users to do their jobs at the same time.

Tab.4. Bounds of variables

Tab. 5 now shows that pefmGA discovered much better
results than any other methods (box=7.24, efmGA=4.07).
As you can also note, gradient influence diminished.

 Best simulation Average simulation

Method FF eval time FF FF eval time FF

box 13160 480 7.24 11446 220 9.86

sGA 22356 310 7.35 19580 130 10.19

efmGA 40000 120 4.07 40000 120 4.40

efmGA+grad 40205 129 4.07 40350 132 4.32

Acknowledgements
This research and publication have been sponsored by

the Czech Grant Agency, contracts no. 102/01/0571 and
102/01/0573, and by the Czech Ministry of Education in
the frame of the project MSM 210000015.

References
Tab. 5. Second interval results

[1] KNJAZEW, D. Application of the Fast Messy Genetic Algorithm to
Permutation and Scheduling Problems. Illigal Report 2000022,
University of Illinois, May 2000.

[2] SKVOR, Z. CAD pro vf. techniku. Czech Technical University,
Prague, 1998.

[3] GOLDBERG, E., DEB, K., KARGUPTA, H., HARIK, G. Rapid,
Accurate Optimization of Difficult Problems Using Fast Messy
Genetic Algorithms. Illigal Report 93004, University of Illinois,
February 1993.

[4] GOLDBERG, D.E. Genetic algorithms in search, optimization and
machine learning, Addison Wesley Publishing Company, January
1989.

Fig. 17. Graphical comparison
[5] DEB, K. Binary and Floating-point Function Optimization using

Messy Genetic Algorithms. Illigal Report No. 91004.
3.3 Parallel Acceleration

[6] The search for Extraterrestrial Intelligence, http://setiat-
home.ssl.berkley.edu Each parallel computation machine (regardless of

utilization) can be characterized by plenty of operating
parameters. Parallel acceleration is one of the most impor-
tant ones (it corresponds to efficiency). Values near to one
means that the incorporation for example of 10 clients will
speed up equivalent sequentially process by 10 times (lin-
ear acceleration). However this value is rather theoretical
because of communication expense and many others fac-
tors. Efficiency rapidly falls with lowering this value. Fig.
18 demonstrates that proposed conception and
communication protocol are efficient even for huge sub-
space segmentations.

[7] HOFFMANN, K., SOKOL, V. Analysis of 3D Vertical Strip on
Microstrip Line. In Proceedings of the European Microwave
Conference, Vol. 2, pp. 569-572, Milan 2002.

[8] PRESS, H.W., TEUKOLSKY, S.A., VETTERLING, W.T.,
FLANNERY, B.T. Numerical recepies in C. Cambridge University
Press, ISBN 0-511-43108-5.

About Authors...
Pavel KOSTKA graduated from CTU in Prague in 2000.
Optimization of microwave structures, parallel
computation and algorithm-migration processes are his
main points of interest.

0.75

0.85

0.95

1.05

1 9 49 196 729
Number of intervals

Pa
ra

lle
l a

cc
el

er
at

io
n

Zbyněk Škvor graduated from CTU in Prague, 1985. He is
with the Department of Electromagnetic Field, CTU
Prague. His field of interest includes numerical
electromagnetics, CAD for radio-frequency and microwave
circuits and microwave measurements. Fig. 18. Parallel acceleration

