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Abstract. Fast messy genetic optimization is found suit-
able for complex microwave circuit design. Increase in 
computation speed is achieved using several ordinary 
computers connected to a network. Calculations are run-
ning on background so that computers can be used for 
other purposes at the same time. Dynamic change of 
bounds, search space segmentation and gradient incorpo-
ration have significantly improved convergence rate. The 
new method has found global minimum in each run, while 
classic methods failed for some starting points. 
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1. Introduction 
Microwave circuit design relies on Computer Aided 

Design (CAD) tools. Contemporary software packages 
allow optimization of circuit performance using so-called 
standard methods. However powerful, these methods re-
quire a good estimation of starting point, and provide for 
optimization in narrow variable bounds. What’s more, the 
higher frequency is, the more parasitic elements must be 
taken into account. 

As an example, consider an equivalent circuit of a mi-
crowave transistor BF405 (produced by Infineon) – see 
Fig. 1. Sub-circuit bounded by A-B-C points stands for just 
pure chip and a few parasitic inductances and capacitances 
that correspond to 3 bond wires between the chip and pads 
of transistor box.  

Such circuit is fully sufficient at low frequencies and 
can as such be used as a model in Spice or other simula-
tors. Unfortunately, with increasing frequencies the model 
doesn’t seem so ideal – one needs to include much more 
parasitic effects. The whole Fig. 1 shows the equivalent 
circuit usable for frequencies above approx. 1,07 GHz 
(phase error > 5°, amplitude error > 0,05). As you can see, 
there are 12 another parasitic elements. In order to extract 
equivalent circuit parameters from measured transistor 

characteristics, all of these are expected to be the subject of 
further optimization process.  

Efficiency of common types of algorithms falls rap-
idly down with the rising size of such search space (looser 
variable bounds). Many of them are almost incapable to 
find an acceptable solution in reasonable time.  

 
Fig. 1. Equivalent circuit of microwave transistor BF405 

The above mentioned arguments led designers to the new 
groups of algorithms, such as neural networks, ant colony 
systems or genetic algorithms (GAs). The last group – GAs 
– went through the stormy development in the last thirty 
years. 

Goldberg laid the foundation of this scientific field in 
1989 [5]. He introduced evolutionary strategy, population 
breading and basic genetic cycle. All together this is called 
simple genetic algorithm (sGA).  

sGA is nowadays widely spread and many scientists 
used it for solving general as well as specific types of op-
timization problems. However effective sGA is, it suffers 
from many lacks. Poor defense against local minimum fall 
and unconstrained number of fitness evaluation cycles are 
the most serious ones. Parallel enhanced fast messy genetic 
algorithm (pefmGA) sufficiently deals with these 
disadvantages and altogether with parallel processing it is 
capable of enlarging the search space many times in 
comparison with common sGA. 
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2. Algorithm Description 
The basic idea comes from the works involving messy 

and fast messy GA [3,5] and from the project of searching 
extraterrestrial intelligence (seti@home) [6]. The algorithm 
has been enriched with some features that significantly 
improve convergence and extend the search space. Com-
mon personal computers at network have been used to 
distribute computation so that whole process would be 
faster. 

2.1 Messy GAs 
All messy GA (mGA) clones incorporate so-called 

messy representation of chromosomes. Gene position is no 
longer fixed – mGA relaxes such interconnection. In order 
to identify a particular gene we denote it by a pair of 
(allele, locus). Locus is simply the position of allele within 
chromosome and allele represents value (typically binary 
digit 0 or 1). For example, chromosome 1011 can be re-
typed into messy code as four-pair string ((1,1) (2,0) (3,1) 
(4,1)) or equally according to the Fig. 2. 

 

 

 

 
Fig. 2. Messy representation of a chromosome 

Common crossover operation was replaced by a couple cut 
& splice. Even one can guess that these operations do the 
same as crossover does in sGA, it’s a little bit more com-
plicated. First, each operation can occur during the itera-
tion cycle only with the some probability: each chromo-
some starts with a length λ, where λ<l (see section 2.3) so 
that at the beginning it is more probable that splice will 
occur; as soon as lengths of strings reach a constant cut, 
will be engaged. Second, these operations can produce 
chromosomes of different length. Fig. 3 just describes such 
case – chrom A consists of three genes, chrom B of nine 
genes. The first one is too short and let’s say, that cut will 
not occur; the latter is (again – let’s say) long enough and 
operation cut will occur. Splice operation produces off-
spring: the1st one consists of whole chrom A and the left 
half of chrom B, the second is only a copy of chrom B. 

 

 

 

 

 
Fig. 3. Cut and splice operation 

Fig. 4 proves the prime advantage of such representation 
(reprinted from [3]). Let us imagine a building block [4] 
1***1. Suppose that left and right ones define some good 

property of an individual. Comparing sGA to mGA opera-
tions one can see that: while one-point crossover disrupts 
the block, mGA preserves it.    

1***1 Good building block: 

sGA: 10001 
00000 
one-point crossover

10000
00001(BB disrupted)

mGA: 

(1,1)(5,1)(2,0)(3,0)(4,0) 

cut & splice 

(BB preserved)

(1,0)(2,0)(3,0)(4,0)(5,0)

(1,1)(5,1)(2,0)(3,0)(5,0)
(1,0)(2,0)(3,0)(4,0)(3,0)(4,0)

 
 

 

 

 

 
 

Fig. 4. Demonstration of messy representation advantage 

2.2 Template Deployment 
Relaxed locus brings another new feature: some genes 

in a chromosome can be included more than once (over-
specification) and another not at all (under-specification). 
Over-specification is managed by left-to-right scan so that 
the first element is taken into account and others are ig-
nored. Under-specification is rather worse: missing genes 
must be supplied from another source. We can generate it 
at random or – and it’s much better – fill it out from a tem-
plate.  

CH mGA: ((3,1)(2,0)(4,1)(1,1)) 

1 1 01 CH sGA: 

 messy 
chrom:

1

(3,1) (2,0) (4,1) (6,0) (7,1)  (10,0) (11,0)

0 1 1 0 0 1 1 1 0 0

1 0 0 0 1 1 01101

 

 

 chrom.  
structure: 

 
template: 

Fig. 5. Under- and over-specification 

2.3 FmGA Sketch 
Fig. 6 presents algorithm iteration loop. It consists of 

inner and outer loops. The inner loop performs two phases, 
so-called: primordial and juxtapositional. At the end of the 
primordial phase, the best-found individual is preset as the 
template for the next lap.  

((2,1) (6,0) (4,1)) Chrom A: 
Chrom B: ((4,0) (1,1) (5,1) (4,0) (2,0) (8,1) (1,0) (2,1) (3,0)) 

POS

1st of offspring : ((2,1) (6,0) (4,1) (1,0) (2,1) (3,0)) 

Probabilistically complete initialization [3] is done 
during primordial stage: first of all, a population is gener-
ated at random; gradually deletion of some genes follows 
so that λ-long building blocks would be constructed (of l-
long problem, where l>λ). Coefficient λ is increased with 
the rising number of generation, thus the amount of genes 

((4,0) (1,1) (5,1) (4,0) (2,0) (8,1) (1,0) (2,1) (3,0)) 2nd of offspring: 



12 P. KOSTKA, Z. ŠKVOR, MICROWAVE-CIRCUIT OPTIMIZATION WITH PARALLEL ENHANCED FAST MESSY … 

filled from the template goes down. Fig. 7 presents an 
example of such initialization (reprinted from [4]). 

 

 

 

 

 

 

 

 

 
Fig. 6. Conception of mGA 

 

 

 

 

 

 

 

 

 

     (2,0)(3,0)     (5,0)(6,0)          (9,0)(10,0) ? 
     (2,1)(3,0)(4,0)(5,1)     (7,1)     (9,1)       ? 
(1,0)(2,0)          (5,0)(6,0)     (8,0)(9,0)       ? 
(1,0)(2,0)     (4,0)(5,0)     (7,0)          (10,0) ? 

Fig. 7. Probabilistically complete initialization 

Juxtapositional phase iterates with cut & splice 
operations, mutation (that’s the same as in sGA is) and 
selection and fitness function (FF) evaluation. Selection 
(tournament) is enriched with thresholding idea: two 
chromosomes can fight with each other only if they have 
some amount of genes in common. Random selection is 
used otherwise. 

2.4 Conception of pefmGA 
Four important features have been added to fmGA 

algorithm to speed up and sharpen convergence: 
(a) search space segmentation, 
(b) mapping with dynamically changed bounds, 
(c) parallel processing, 
(d) gradient method incorporation. 

2.5 Search Space Segmentation 
Even the best algorithm has upper bounded search 

space so that above such limits a (global) solution can’t 
reliably find. If the search space consists of n-dimensional  
(n-D) cube (where n- is number of variables) we can split 
the cube into some amount of smaller n-D sub-cubes so 
that they all together make up the original space. Fig. 8 
illustrates a very easy example of 1-D area. Note that sub-

intervals are slightly overlapped. It helps to find a solution 
located near their borders.  

 Outer cycle 

Inner cycle 

template setting (nth+1 lap) 

juxtapositional phase 

primordial phase 

nth ring initialization 

2nd subinterval
 

..............1st subinterval 3rd subinterval  

 

 variable A 
 

Fig. 8.  1-D search space division 

The next figure (Fig. 9) then mentions the same procedure 
in 3-D space.  

variable B 
 

variable C 

subinterval A-B-C 

 

After the end of selection 

After gene deletion... 

(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 7 
(1,0)(2,1)(3,0)(4,0)(5,1)(6,0)(7,1)(8,1)(9,1)(10,1) 3 
(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 2 
(1,0)(2,1)(3,1)(4,1)(5,0)(6,0)(7,1)(8,0)(9,1)(10,0) 5 

Population 
(1,0)(2,0)(3,0)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 7 
(1,0)(2,1)(3,0)(4,0)(5,1)(6,0)(7,1)(8,1)(9,1)(10,1) 3 
(1,1)(2,0)(3,1)(4,0)(5,0)(6,0)(7,0)(8,0)(9,0)(10,0) 2 
(1,0)(2,1)(3,1)(4,1)(5,0)(6,0)(7,1)(8,0)(9,1)(10,0) 5 

FF values
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A
 

 

 

 

 

 

 

 

 
Fig. 9. 3-D search space division 

2.6 Mapping & Dynamically Changed 
Bounds 
Implementation of any genetic algorithm brings one 

more fundamental issue – the number of bits per one vari-
able. It’s obvious that the more bits (alleles per gene) we 
take, the finer granularity we obtain and the better chance 
to discover a solution we have. On the other hand, the 
greater a chromosome is, the larger the population must be 
and the more time its evaluation will take. What’s more, 
however fine the granularity is, it can’t ensure that the right 
solution might be discovered (it can simply lie between 
two samples). 

These reasons were the main motivation to re-make 
the representation of variable in chromosome. Imagine 
some fixed length of alleles per variable independently on 
the number of its bound. Let’s denote the minimum of the 
bound as MING and maximum as MAXG (watch Fig. 10). 
After the first iteration, a minimum “A” is discovered. The 
change of interval follows so that the new one (specified 
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by MINN and MAXN) is half of the original one and mini-
mum A lies in its center. 

 

 

 

 

 

 
 

Fig. 10. Change of bounds 

Such technique can either converge to the solution or 
diverge. Typical branch and bound algorithm in case of 
divergence executes rollback operation. Nevertheless our 
goal is not to walk through search space in this way – 
that’s the GA business. Such changes are performed only 
few times and solely in the second half of outer cycle at the 
moment, if no important FF improvement for longer time 
occurs.  

2.7 Parallel Processing 
Our parallel engine is based on traditional client-

server architecture – see Fig.11. Server starts the whole 
optimization by splitting n-D search space into particular 
subspaces and subsequently saving them into computation 
stack. Then it informs efmGA clients about the beginning 
process and waits for their initialization. After a while, it 
distributes particular subspaces among clients, launches 
computations and collects results. Server does it until it 
gets stack empty. If some client doesn’t respond within a 
timeout, its task is redistributed to another one, so that 
integrity is preserved.  

 

 

 

 

 

 

 
Fig. 11. Conception of pefmGA 

2.8 Gradient Incorporation 
Experiments with GA methods have shown an inter-

esting fact (see Fig 12): the time needed for discovery of an 
estimated position of global minimum of FF (i.e. move-
ment from point A to point B) for let’s 1-D array (variable 
x) is fully comparable with the time, that GA needs to fall 
into point C (i.e. movement from point B to point C). 
While the coarse tuning of FF (A→B) is the typical GA 

task, the fine tuning (B→C) can be much more efficiently 
done by some gradient method (provided starting point 
were correctly set). This idea led to the implementation of a 
gradient client (see Fig. 11), which performs fine optimi-
zations of pefmGA results.  

Interval before change of bounds 

A

MAXNMINN

MAXGMING
 

 

 
 

 

 

FFMAX

FFMIN

variable x 

FF
(x

) 

global minimum 

A B

C

B
detail (fine tuning)  

coarse tuning 

Interval after changing  the bounds 

Fig. 12. Gradient incorporation 

3. Results 

3.1 Benchmark Task 
On the contrary to common optimization, where 

purely defined NP-hard problems (for example TSP) are 
used as standardized benchmarks, microwave optimization 
field hasn’t established such tasks yet. The presented task 
is one of tricky ones and (as will be demonstrated further) 
almost all “classic” methods are running into problems if 
used to find its suitable solution within wider bounds.  

3-D vertical stub, positioned on a microstrip line was 
published in [7] – see Fig 13. Such a stub is nowadays 
widely used as capacitor, especially as a DC block.  

 

clients 

efmGAN efmGA3 efmGA2 

server gradient client 

efmGA1 

computation 
stack 

Fig. 13. Radial stub 

Detail structure analysis leads to the decomposition into 
even and odd modes. Let’s consider just the odd mode 
equivalent circuit, as shown in Fig 14. There are 8 pa-
rameters (even mode has up to 9 parameters), whereas TL2 
represents transmission line with nonlinear dependence of 
εR and Z0. 

The subtraction of measured and computed matrixes 
of circuit scattering parameters is the ordinary method of 
fitting values to some measured data (based on prior 
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knowledge of equivalent circuit topology). Circuit ele-
ments are optimized in order to minimize difference be-
tween measured and calculated values. The same method 
has been used within this benchmark test. That means that 
zero amplitude (and phase) indicates exact matching. Prac-
tically used circuits don’t need absolute match correspon-
dence but it must be better than a value. 

Almost all of these methods are described in [8]. We 
have selected wide optimization bounds for each variable 
so that many local minima are presented in search space. 
Tab. 2 illustrates chosen bounds. 
 

L2 50p ~ 500p TL2 2.5m ~ 4m 

C4 100f ~ 1p R0 10 ~ 100 

C3 10f ~ 300f L0 100p ~ 2n 

L3 10p ~ 300p C0 2f ~ 20f 

 

Tab. 2. Bounds of variables 

Each method has started five times. Tab. 3 sums summa-
rized obtained best and average results. Time specification 
(specified in seconds) depends on the processor perform-
ance (these ones corresponds to AMD-KII@800MHz, 
2507MIPS, 1003MFLOPS) and is mentioned rather for 
comparision. Fig. 14. Odd mode of radial stub decomposition 

To better authors’ published results was obviously our first 
goal. Fig. 15 compares the amplitude of original results 
(sGA optimization, Gaussian mutation – 20%, 60 
individuals in population size, Microwave office) and 
pefmGA results. The bounds were deliberately set very 
strictly to prevent from premature finish of optimization. 
Shadow triangles graphically present the goals. 

 

 Best simulation Average simulation 

Method FF eval time FF FF eval time FF 

pow 405 5 14.69 405 5 14.69

varMet 181 1 14.69 181 1 14.69

stDesc 15361 90 14.67 15361 90 14.67

box 11715 52 0.050 11425 64 0.070

sGA 22135 31 0.055 25024 40 0.060

efmGA 40000 120 0.339 40000 120 0.683

efmGA+grad 42402 125 0.054 43485 127 0.065

 

Tab. 3. First interval results 

Fig. 16 compares the results. Methods pow, varMet and 
stDesc are not plotted because they were not able to 
improve starting FF value at all. As you can see, raw 
efmGA results seem a little bit worse than others (although 
the comparison of FF (box=0.05, efmGA=0.339 versus 
stDesc=14.67) doesn’t show out such dramatic difference). 
That’s the reason why gradient method has been 
incorporated.  

Fig. 15. Comparision of sGA and pefmGA results 

3.2 Algorithm Comparison 

 

Although the previous graph exposed that pefmGA 
achieved better results, one must perform a little bit more 
sophisticated confrontation to prove that pefmGA is more 
effective than others. Let’s try optimization with the most 
often used methods (Tab. 1 sums them up).  
 

  Abbreviation 

Powell pow 

variable metrics varMet 

steepest descent stDesc 

Box box 

sGA sGA 

efmGA efmGA 

efmGA+gradient method efmGA+grad 

Fig. 16. Graphical comparison 

To be able to demonstrate the power of the presented 
algorithm, substantially wider search space has been used 
(see Tab. 4). The first four variable bounds have been 
enlarged – each by two decades. Tab. 1. Methods used for comparison 
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4. Conclusion  

L2 50p ~ 50000p TL2 2.5m ~ 4m

C4 100f ~ 100p R0 10 ~ 100 

C3 10f ~ 30000f L0 100p ~ 2n 

L3 10p ~ 30000p C0 2f ~ 20f 

Parallel enhanced fast messy genetic optimization is a 
promising method found suitable for complex microwave 
circuit design. High computational load can be overcome at 
nearly no cost using several ordinary computers connected 
to a network. Running calculations on background enable 
other users to do their jobs at the same time.  

Tab.4. Bounds of variables 

Tab. 5 now shows that pefmGA discovered much better 
results than any other methods (box=7.24, efmGA=4.07). 
As you can also note, gradient influence diminished. 
 

 Best simulation Average simulation 

Method FF eval time FF FF eval time FF 

box 13160 480 7.24 11446 220 9.86 

sGA 22356 310 7.35 19580 130 10.19

efmGA 40000 120 4.07 40000 120 4.40 

efmGA+grad 40205 129 4.07 40350 132 4.32 
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