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−= −+ ) (1h ) Abstract. A new approach suitable for determination of 
the maximal stable time increment for the Finite-Difference 
Time-Domain (FDTD) algorithm in common curvilinear 
coordinates, for general mesh shapes and certain types of 
boundaries is presented. The maximal time increment cor-
responds to a characteristic value of a Helmholz equation 
that is solved by a finite-difference (FD) method. If this 
method uses exactly the same discretization as the given 
FDTD method (same mesh, boundary conditions, order of 
precision etc.), the maximal stable time increment is ob-
tained from the highest characteristic value. The FD sys-
tem is solved by an iterative method, which uses only 
slightly altered original FDTD formulae. The Courant 
condition yields a stable time increment, but in certain 
cases the maximum increment is slightly greater [2]. 
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These equations require comments: 
• Time position of the field samples is marked by the upper 
suffix; n is integral ( n Z∈ ). 

• Space differences are not written in full, since the space 
scheme can be arbitrary. The space scheme is in fact an 
approximation (discretization) of the continuous curl vec-
tor operator and in (1) “curl” is only a placeholder for the 
particular discretization, valid for a particular coordinate 
system. 

Keywords 
FDTD, stability, critical time increment, critical time 
step. 

• It is marked explicitly what component of curl approxi-
mation is computed (lower suffix) and what it is computed 
from: e.g. in (1h) the Hz component is updated using the z 
component of curl, which is computed using both  and 

. 
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1. Introduction 
Solution of Maxwell’s equations in time domain is 

becoming increasingly important as a tool for microwave 
component analysis. The precision of electromagnetic field 
modeling is a complex question. One major factor that has 
a considerable influence on the precision is the time incre-
ment (∆t) of the FDTD algorithm. An optimal value of ∆t 
exists, resulting in the fastest and most precise computa-
tion. The other reason for setting this constant properly is 
that even a small excess over its optimal value would result 
in instability of the algorithm. There is a condition for ∆t 
called Courant [1], valid only for rectangular coordinates 
and an infinitely large mesh. A new approach has been 
used, applicable under more general conditions (mesh 
shapes, boundary conditions, general curvilinear coordi-
nates (GCC)). In [7], [8] considerations on FDTD in GCC 
are presented, but conclusions are achieved only for GCC 
without curvature. 

• For sake of simplicity, only a certain field mode is con-
sidered: field components remain constant in the direction 
of z axis. 

• The time scheme of (1) together with the constants (2) is 
applicable for media with significant losses [1]. Medium 
properties are described by Eσ , Mσ , ε  and µ . 

2.1 Time Dependence Cancellation, 
Formulation of Stability 
In order to get frequency-domain formulae, let us 

substitute the following time dependence into (1). 
njn EeE ϕ=     ,    ( 2
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2. Theory The field samples at the left-hand sides of (3), which 
depend on all the coordinates (the suffixes indicate position 
in time), are expressed as product of complex functions E 

In order to describe the principle of the method, let us 
consider an example of FDTD in 2 dimensions only: 
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and H, which depend only on position in space, and time-
dependent functions. Further, j is the imaginary unit and φ 
corresponds to angular frequency. Similar procedure can 
be found in [1]. 

The formulae follow: 
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The formulae (4) present a set of equations for the 
unknown φ. The FDTD algorithm (1) is stable, only if the 
following condition is met for all possible solutions of (4) 
for φ: 

{ } 0Im ≥ϕ . (5) 

The solutions of (4) must be discussed with respect to 
∆t (∆t is hidden in the coefficients of (4)), which has to be 
as great as possible, but not violating the stability condition 
(5). 

For the precise formulation of stability a supplemen-
tary condition must be specified. Without this condition 
one would derive that instability occurs, only if ∆t > ∆tc, 
whereas it can be proved that ∆t ≥ ∆tc  is correct. Although 
this has no practical use, we found inevitable to mention it. 
We will only outline the reason of instability for ∆t = ∆tc 
and formulation of the supplementary condition: 

The fact is that the algorithm can be instable even for 
Im{φ}=0 (which is admitted by (5)), though the functions 
(3) themselves are bounded for Im{φ}=0. Instability occurs 
for this special case (Im{φ}=0), only if there are two so-
lutions of (4) (field modes) with the values φ equal to π and 
–π. This special case should be excluded from the defi-
nition of stable conditions in the formulation of stability 
(by means of the supplementary condition). The reason of 
instability in this special case can be outlined only in short 
at this place: The resulting time behavior (3) of the two 
modes (with φ equal to π  and –π) become linearly depend-
ent (this phenomenon could not occur for continuous 
counterpart of (3)). Therefore if there are two modes with φ 
approaching to π  and –π, then an attempt to express an 
initial field distribution of (1) by means of a linear combi-
nation of modes would result in the increasing absolute 
value of the coefficients of the two modes above all limits. 
The stability limit is characterized by presence of a mode 
with φ = π (see next chapters) and this mode always has its 
counterpart with φ = -π (consider (4)). Therefore exactly at 
the stability limit the algorithm is instable. At the end we 
can note that near the stability limit the coefficients of the 
two modes can be significantly greater than all other coef-
ficients. In an experiment (1), oscillations of these two 
modes (the other modes appear only as noise) can be ob-
served in the mesh. The two modes are distorted (see chap-
ter 2.3) and their great amplitudes may influence the com-

puter numeric. This can happen, however, only if ∆t is 
extremely close to ∆tc. 

2.2 Lossless Case 

First, let us consider lossless case (σE ═ σM ═ 0). The 
formulae (4) will have the following form; let us define a 
constant k, which is apparent from (6e’). 
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A method described in the next chapter is used to ob-
tain the values of k. For the calculations in this chapter it is 
necessary to know that: i) these values are real ( k R∈ ), ii) 
there is a finite number of them, iii) for each k there is also 
-k. Here it is to discuss only the relationship among k, φ 
and ∆t, which is defined in (6e’): 
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It can be seen that the maximum value of ∆t, for 
which (5) is true for all the possible values of k, is given by 
(7) when 

πϕ =  (8) 

Further, the maximum value of k (km) must be substituted: 

12
1 =∆ cm tk  (9) 

2.3 Solution of the Finite-Difference (FD) 
Scheme for Helmholz Equation 

The equation set (6), which is to be solved, is in fact a 
finite-difference (FD) scheme that can be used to solve 
a Helmholz equation numerically; the Helmholz equation 
can be obtained by elimination of E from (6):  
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This form (10) can be used to denote both the continuous 
Helmholz equation and its FD scheme. The latter can 
be obtained, if the particular discretization is substituted 
for curl. In this case the notation  would not stand for the 
continuous Laplace operator, but for its discrete equivalent. 

∆

The solutions of (10) are characteristic functions 
(called modes), corresponding to characteristic values k. 

In [2] a method for solving a discrete system like (10) 
or (6) is presented. It makes use of the variable separation 
principle and therefore it can handle only certain boundary 
conditions. A more general iterative method [3] can 
be used: 
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The term ∆Hz is evaluated at all the mesh points and 
these values are used to compute k by means of (10). Be-
cause (10) is not satisfied, different values k will be ob-
tained at every mesh point. Rayleigh’s formula is used to 
produce an estimation of k. Then, this estimation together 
with the values ∆Hz is used to correct the distribution of H 
using (10). The process is stopped if the change in k is 
sufficiently small. 

In order to obtain the correct k (and hence ∆tc), the 
FD scheme (10) must be exactly the same as the space 
scheme of the FDTD method itself (i.e. the same spacing of 
corresponding samples, boundary conditions, order of 
precision, coordinate system). It is easy to fulfil this condi-
tion and moreover it is not necessary to eliminate E com-
ponents from (6) as it is suggested in (10). The desired 
values of ∆Hz can be easily obtained directly from (6) in 
two steps: First, E is computed from H using (6e,6e’). The 
values of H computed back from E using (6h) are the 
values of (1/k2)∆Hz. It is simple to change the programmed 
FDTD (1) and obtain the FD form (6). 

Following comments must be pointed out: 
• The mesh can have arbitrary shape, but the simplest con-
ditions at the boundaries (zero elements, E or H) are as-
sumed in the following text. (Correct results were obtained 
for certain more complicated conditions, but let us not 
discuss it in this paper). 

• It holds that . One could think at first glance at (6) 
that it is necessary to use complex arithmetic, but it is not 
inevitable (consider e.g. the substitution H = jH’). 

Rk ∈

• A discrete mode with the maximal characteristic value km 
exists (unlike the continuous case). 

• The material properties ε and µ in (10) (and thus also in 
(6)) need not be independent on space position (although in 
this case naming the equation Helmholz may not be justi-
fied). Convergence of the method was verified experimen-
tally. 

• The discrete mode with the maximal k is distorted so 
much that it cannot be considered to be an approximation 
of a continuous mode any more (it is possible only for low 
k).  

Iterations of this method require an initial space dis-
tribution of Hz. It shows that the corresponding mode of 
interest (the one with km) has the following property: all the 
samples neighboring in the directions of all the space coor-
dinates have opposite sign. In order to obtain the mode of 
interest, the initial distribution has to respect this. In all the 
experiments the following distribution yielded the desired 
mode: 
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where i,j are integer indices to the field of samples. The 
formula does not hold for the zero H samples at the 
boundary (if there are any). The formula is valid for our 2-

dimensional example, but it can be extended to 3 
dimensions easily. 

2.4 Lossy Case 
It is necessary to solve and discuss the general 

formulae (4). Let us mark the coefficients of (4) as kE, kM, 
and adjust them:  
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In the lossless case it was possible to obtain the FD 
scheme for the Helmholz equation in the form (10), thanks 
to the fact that k (see (6e’)) was constant. In this case, 
however, kE , kM, may vary with space position (according 
to material properties), which would produce a FD scheme 
with variable and (moreover) non-linear coefficients. De-
spite these facts an experiment employing a modified 
method from the previous chapter was found to yield cor-
rect results. The only fault is that in this general case we 
were not able to prove the condition for the limit of 
stability, which, as experiments show, is given by (8), 
again. 

We were able to prove this fact only for the case of 
constant material properties: In this case kE and kM are 
constant as well and a formula like (10) can be obtained (in 
(10), ε and µ must be removed (set to 1) and kEkM 
substituted for ). We will show certain steps of the 
proof only for the special case σ

2k
M/2µ ═ σE/2ε ═ p. The 

formula, corresponding to (7) in the lossless case, follows: 
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The left-hand side of (13) is linearly proportional to k2, 
proportional to ∆t and is always real and non-negative. The 
right-hand side is real, if the argument of sin is real or if 
Re{φ} ═ π. Until the left hand side is smaller than 1, its 
growth (due to greater ∆t or k) can be compensated by 
growth of Re{φ}, provided that Im{½φ} ═ p∆t. After that 
(when sin reaches its maximum in real domain) the 
compensation is accomplished either by increase or 
decrease of Im{φ} (two roots, each of which can spoil 
stability), while Re{φ} has to remain equal to π. 
Decreasing Im{φ} can become negative, which means 
instability. 

The formula (13) could be used to determine ∆tc, if 
(8) and km were substituted into it. We used a different 
method, capable to handle even the fully general case:  

Let us write (4) for the stability limit (8), let us define 
the symbols ε’, µ’ and let us introduce an artificial constant  
k’:  
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where C is a field component, u stands for a coordinate (x, 
y, z or t) and g, f for a function.  

It is always possible to write the equations this way, 
as we can make use of the curl operators written by means 
of the local length units hx, hy, hz (see e.g. [5]). An exam-
ple, the first Maxwell’s equation for one vector component, 
follows: 

In order to get the correct ∆tc, k’ must be equal to 1. 
Introducing k’ results in a set that we are able to solve (the 
set has the form of (6) now). Direct solution is not possible 
because the coefficients of (14), i.e. ε’ and µ’ are nonlinear 
functions of position and the unknown ∆tc. What we can 
do is to solve (14) for k’, use it (k’) for correction of ∆tc 
and repeat the procedure, until k’ is close enough to 1. 
Prior to computing k’, the coefficients ε’ and µ’ must be 
known, therefore an initial guess of ∆tc is required.  
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This equation holds for the coordinate x of the coordinate 
system; – the other 2 equations can be obtained by cyclic 
interchange of indices x, y, z. The second Maxwell’s equa-
tion is analogous. 

After an ideal correction of ∆tc the values of  µ’ (and 
similarly ε’) in every mesh cell should change k’-times. In 
such an ideal case it would be possible to set k’ to 1 as 
required and (14) would remain to be satisfied because 
such a correction would not change the set (14) in fact. We 
would arrive to the solution in one step. It could be done, 
however, only if the material properties were independent 
on space position or for certain dependence of µ’ and ε’ on 
∆tc (consider lossless case). Otherwise it is not possible to 
achieve the ideal correction for all the mesh cells and more 
iterations are inevitable.  

The FDTD is defined by the discretization prescrip-
tion (or approximation) of (15). Different prescriptions 
result in different algorithms with corresponding order of 
precision. The following prescription is considered here: 
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Explanation, further specifications of (17) and com-
ments are required; let us suppose that we want to write the 
approximation (17) for the point [t0, x0, y0, z0]: 

In the experiment the correction  was 
used and the method showed to be convergent. We have 
not proved this, but the character of the dependence of 1/µ’ 
and 1/ε’ on ∆t

ii
c

i
c ktt ′∆=∆ +1

c promise not to disturb the stability: The 
derivative of these functions is positive and does not 
increase as ∆tc grows. Therefore if ∆tc changes k’-times 
(k’>0), the change in µ’ (or ε’) is smaller than k’-times or is 
exactly k’-times (if the material in the given space cell is 
lossless). 

• The generic coordinate u in (17) can stand for x, y, z, t. 

• Difference of 2 neighboring field samples, 2
1−C , 2

1+C  is 
used. The samples are located −½∆u and +½∆u (respec-
tively) in the direction u from the point of approximation. 

• The difference is weighted by corresponding values of f – 
samples of f are taken at the points of the samples 2

1−C , 2
1+C . 

2.5 Compact Notation of FDTD Update 
Formulae • The interval, along which the integral is computed, is an 

oriented abscissa from the point of 2
1−C  to 2

1+C  – all the 
coordinates except for u are constant. This chapter is added here not only in order to save 

space during description of the experiment. A very simple, 
yet exact and well-suited notation, which is especially 
convenient for theoretical derivations, will be presented. 
The compact form can be used for abbreviation of the 
FDTD formulae in rectangular [1] and cylindrical [4] coor-
dinates and it yields the general form of the coefficients (2) 
[1]. FDTD in spherical coordinates, an algorithm of ade-
quate complexity for our experiment, was not found in any 
literature and therefore it was constructed using this ap-
proach. 

• It is necessary to respect the fact that the approximation 
is valid at [t0, x0, y0, z0] (which is known as central-
difference principle). Approximation of all the terms of 
Maxwell’s equations has to be valid at the same point.  
This fact induces formation of the corresponding 
discretization mesh [6]. 

Let us give an example – discretization of the right-
hand side of (16), which yields the general coefficients (2): 

Let us rewrite (16), abbreviating its left-hand side as 
curl and expanding only the right-hand side according to 
(17). (The coordinate u in the general formula (15) stand 
for t, f for te ε

σ , g for te ε
σ

ε
1 and C for ):  xE

The compact scheme is a result of expressing Max-
well’s equations i) for corresponding coordinate system, ii) 
in differential form, iii) as a sum of so-called self-adjoined 
terms: 
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• The upper indices n, i, j, k indicate position of samples: 
e.g. kji ,,,  is the value at the point [ ]kjin rt ϕϑ ,,, , where 
tn=n∆t, ri=i∆r,... 

• R and S stand for samples of the functions r and ϑsin  
(respectively) at the points given by the suffixes. (Those 
suffixes, on which the given function does not depend, are 
omitted.) 

Upper suffix denotes time position of the sample: Ex
n is the 

sample of Ex at tn=n∆t. The approximation is valid for time 
instant n, therefore the same must be true for the remaining 
terms of the Maxwell’s equation (which are “hidden” in 
curl) – this is marked by the suffix n at curl.  The space 
coordinates remain constant, therefore we avoided to write 
3 more space indices in (18). 

For the second term in (19) the function ‘ ϑsinr ’ is 
constant in φ, therefore the result of the corresponding 
average integral in (17) is simply RiSj. In the first term only 
the function r is constant in ϑ , therefore the result is RiΦj, 
where Φj is the average of ‘ ϑsin ’ on the corresponding 
abscissa, i.e.: 

If the formula (18) were explicit for 2
1+n

xE , we would 
obtain an expression only slightly different from (1e). In 
order to obtain (1e) exactly, one must make one more 
substitution into (18). It is self-evident, that field samples 
in an equation set (like (1), e.g.) must match. The equation 
(18), as is, would match (1h,1e’), only if Zn ∈+ )2

1( . The 
transition 2

1+→ nn  makes possible to write n , as it is 
assumed for (1). 
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At this place we made a simplification in the formulae 
of the experiment. In all cases the average of ‘ ϑsin ’ was 
approximated by the value of ‘ ϑsin ’ at the center of the 
abscissa, i.e. Φj ≡Sj simply. 

In order to get the update formula for Er, (20) and 
(18) must be combined. Prior to that, x≡r must be substi-
tuted into (18) and (18) must be augmented by the left-out 
space indices. 

3. Experiments 
The method was tested in many experiments. For the 

experiments in rectangular, cylindrical and spherical 
coordinates described in [2] the same results were 
obtained. Both the methods yielded slightly different 
results compared to the Courant condition [1] (rectangular 
coordinates). Despite this fact the results are correct. 
Experiment verified that the Courant condition yields a 
stable ∆t but in certain cases ∆tc is slightly greater [2]. 

3.2 Other Specifications of the Experiment 

A detailed and unique description of an experiment 
with FDTD in spherical coordinates follows. 

3.1 FDTD Update Formulae 
As an example, we will outline derivation of the 

update formula for Er. 
The local length units for the spherical coordinates 

( ϕϑ,,r ) are ϑsin,, rr1  respectively, hence the left-hand side 
of (16) follows: 
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Simple boundary condition was used: electric walls 
placed directly to the tangential components of E. The 
shape of FDTD mesh was a “cube” in spherical coordinates 
with the walls at R1;2=10;15, Θ1;2=1;1.5, Φ1;2=0;1. The 
number of cells in the corresponding directions was 
15;10;5. In some cases this region was made more com-
plex: In the sub-region that spans 3 cells in r direction from 
the wall at , all the cells from the wall at Θ1R 1 were cut off 
by the electric wall to the depth of 3 cells and similarly 
from the wall Φ1 to the depth 2. The medium was con-
sidered lossless, with ε=µ=1, except (in some cases) for the 
following belt: The E components at rRrRr ∆+∆+∈ 5,3 11

22 ×

 
were updated using the constants aE, bE (see (2)) 
corresponding to σE=1. Altogether cases were 
investigated: a cube or a complex region with or without 
losses. 

3.3 Results The discretization of (19) can be readily written: 
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In the case of cube with losses ∆tc=0.289012 and it 
was determined by the mode Hr=0 (the time increment 
obtained from the mode Er=0 was slightly higher: 
0.289068). (The indicated precision was obtained in cca 
300 iterations without relaxation.) In the case of cube 
without losses ∆tc=0.2884806. In the case of complex 
region with and without losses ∆tc=0.290303 and 0.289759 
respectively. Explanation: 
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The experiment yielded some interesting conclusions: 

( )nE 1−ϕ

           n
 

If cells with ε1 are being replaced by ε2, the increment 
∆tc drops rapidly to ∆tc2, provided that a compact region of 
ε2 is being formed. If there is at least one region of ε2 that is 
at least 10x10 cells large, ∆tc is practically given by ∆tc2 
(Courant condition). Dependence on the mesh dimensions 
(Nx,Ny) and position of the region in the mesh is negligible. 

If the ε2 cells are scattered, on the other hand, ∆tc can 
be significantly greater than ∆tc2: we scattered as many as 
30x30 cells into a 100x100 mesh, so that there were no 
adjacent ε2 cells and the resulting ∆tc was greater by cca 
38%.  

Fig. 1. Discretized field strength of the critical mode plotted 
against mesh index n, along structure radius. 

Fig.1 demonstrates a typical waveform of the mode that 
determines instability. It is a waveform of the component 
Eφ along the r coordinate (with fixed ϑ  and φ). The 
waveform forms an alternating series: the product of adja-
cent samples is non-positive, but in Fig.1 the rectified 
waveform was plotted. The zero samples at the boundaries 
R1,R2 are included. 

Perhaps there is a practical application, for which the 
method can yield a more efficient and stable ∆t. 

3.6 Verification of Results 
The obtained critical time increment ∆tc was verified 

experimentally by means of the FDTD algorithm itself. In 
order to verify that our critical time increment holds, we 
made two experiments with ∆t slightly over (relative 
change cca 10-6) and then slightly under our predicted ∆tc. 
In all cases, exceeding predicted ∆tc values caused insta-
bility while lower values proved to be stable.  

3.4 Remarks to 3 Dimensions 
In an equation set for 3 dimensions no elimination 

like (10) is possible in general. Despite that, fortunately, 
the experiment yielded correct value ∆tc. 

To be on a safe side, we recomputed the field for long 
periods to be sure that no other mode does appear. 

During the iterations described in chapter (2.3) the 
characteristic value is estimated from samples of magnetic 
field H. H field is used because in (6) there is only one 
component of this field. In general case there will be all 3 
components for both E and H. In our 3-dimensional ex-
periment only the r components were used for the purpose. 
Depending on whether it was Er or Hr, the experiment 
yielded 2 characteristic values. The critical time increment 
was determined by the greater one. 

4. Conclusion 
A versatile and easy-to-use method capable of precise 

determination of the critical time increment for FDTD was 
presented. The results were verified experimentally for a 
FDTD in spherical coordinates for inhomogeneous medium 
and non-trivial mesh shapes. The authors assume this 
method to be new. 3.5 FDTD in Rectangular Coordinates with 

Inhomogeneous Material 

Acknowledgements We employed an algorithm in rectangular coordinates 
in two dimensions and investigated influence of per-
mittivity distribution on the critical time increment ∆tc. This research and publication have been sponsored by 
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The shape of the mesh was a rectangle, whose 
boundaries passed only through the samples of tangential 
components of electric field. At the boundaries the 
components were set zero. Material was lossless, with µ=1. 
In some cases the initially uniform permittivity distribution 
(ε1=8) was replaced by lower permittivity (ε2=2) in certain 
mesh cells. 
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