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Abstract. A consistent theory of optimum subband coding 
of zero mean wide-sense cyclostationary signals with N-
periodic statistics is presented in this paper. Blocked poly-
phase representation of the analysis and synthesis filter 
banks is introduced as an effective way of multirate sub-
band coder description. Optimum energy compaction using 
Nyquist-M process is presented as a solution for maximi-
zing the coding gain of the coder. In two definitions and 
four theorems the author proves that Nyquist-M filters ful-
fill necessary and sufficient conditions imposed on subband 
signals. Results from Matlab simulations are presented to 
support theoretical conclusions. 
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1. Introduction 
A structure of the Multirate Subband Coder for Wide-

sense Cyclostationary (WSCS) signals, that is to be treated 
hereinafter, is depicted in Fig. 1. Sets of filters Hi( k, z-1) 
and Fi( k, z-1), represent the Analysis Bank and the Synthe-
sis Bank respectively. The index k indicates time varying 
nature of these blocks, since each of them in fact consists 
of a sequence of N Linear Time-Invariant (LTI) filters, 
where N is assigned to the periodicity of cyclostationarity 
of a Linear Periodically Time-Varying (LPTV) structure. 
For the sake of simplicity we assume that period of time 
variation of the structure in Fig. 1 is the same as that of 
input signal. Blocks to the left of the analysis bank are M-
fold decimators that discard all but every M-th sample. 
Blocks to the right of the synthesis bank are M-fold inter-
polators that raise the sampling rate by a factor of M, by 
inserting (M-1) zero samples between two consecutive 
samples of an incoming stream. Block Qi stands for i-th 
A/D converter, communication channel and i-th D/A con-
verters together.  

Cyclostationarity of the input signal is apprehended in 
wide sense for the purpose of this work, assuming N perio-
dicity of the second order statistics. 

One of the crucial quantities used to evaluate efficiency of 
subband coder is a coding gain, defined by (1.1) as a ratio 
between the output distortion variance of a simple PCM 
coder and that of the subband coder 
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Here σ x
2 represents the input signal variance and σ vi

2( k) 
represents variance of i-th subband signal in time instant k, 
see Fig. 2. For an optimum subband coder, the coding gain 
shall be maximized for given statistical parameters of the 
input sequence x(n), under optimum bit allocation scheme  
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where bi( k) stands for number of bits, allocated to the A/D 
converter in i-th subband channel, at the time instant k wit-
hin the period of cyclostationarity N. 

 
Fig. 1. Multirate subband coder for WSCS signals with maxi-

mally decimated filter bank. 
 

LTI equivalent of the multirate subband coder is de-
picted in Fig. 2. Blocked polyphase matrices E~( z-1) and 
R~( z-1) represent analogy to the analysis and synthesis 
bank. Vectors X(k), V(k) and Q(k) are Wide-sense Statio-
nary (WSS) representations of the input signal, subband 
signals and quantizing noise, respectively. 

Among many alternatives to express analysis blocked 
polyphase matrix E~( z-1), the one in (1.3) introduced in [7], 
uses matrix transfer functions H~

ij ( z-1). The N×N matrix 
transfer functions H~

i0 ( z-1), H~
i1 ( z-1), …, H~

i(M-1) ( z-1), 
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respectively relate the N-fold blocked 1-st, 2-nd, …, M-th 
samples within a period of M samples, to N-fold blocked 
M-th samples of the output of the analysis filter Hi(k, z-1). 
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Z-transform (1.4) couples the transfer functions to respec-
tive N×N impulse response matrix. Due to the periodic na-
ture of the original structure [7], each pq-element of the 
matrix represents an LTI system, 
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To design the analysis and synthesis filter bank, i.e. to cal-
culate the elements of polyphase matrices E~ exp(-jω) and 
R~ exp(-jω) is far from being a simple task. Necessary and 
sufficient conditions stated for Power Spectrum Matrix 
(PSD) of subband signals vi( k) in order to reach optimality 
are reviewed in the following theorem. For proof see [9]. 

 
Fig. 2. Blocked polyphase representation of the filter banks. 

Theorem 1.1: The optimum performance of the multirate 
subband coder with uniform, maximally decimated filter-
bank for WSCS signals, i.e. the maximum coding gain 
(1.1) is attained, if and only if both of the following hold: 

1.  The subband signals vi( k) are totally decorrelated for 
all k, i.e. the blocked PSD matrix SV( ω) is diagonal. 

2.  The diagonal elements of SV( ω) obey a specific magni-
tude ordering at each ω, although possibly through a 
different frequency invariant permutation, than that in-
dicated by the canonic ordering. 

Designer’s task is to tailor out the filter banks to meet the 
above conditions. 

2. Optimum Energy Compaction 
The main intention of this section of the paper is to 

show formally, that the analysis filters yielded by the opti-
mum solution, which itself calls for a canonical ordering of 
the subband variances, as required by Theorem 1.1, is in 
fact an optimum compaction filter for WSCS input signal. 

2.1 Nyquist-M filter 
Definition and a list of fundamental properties of Ny-

quist-M filters (or M-th band filters) used for WSS signals 
are presented in [8]. 

Consider a polyphase decomposition of H( z-1); see 
Fig.1, with omitted index k. Suppose the 0-th polyphase 
component E0( z-1) is a constant c, making 
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Then the output  
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Expression (2.2) implies that y( Mn) = cx( n) in the time 
domain. In practical applications one can scale the filter 
such that c = 1. Thus, even though the interpolation filter 
inserts new samples, the existing samples in the input se-
quence x( n) are communicated to the output without dis-
tortion. 

 
Fig. 3. Impulse response of the Nyquist-M filter (A) and exam-

ple of the input sequence (B). 

An impulse response having the above property satisfies 
condition 
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In other words, h(n) has periodic zero-crossings separated 
by M samples, with exception of h(0) = c. See Fig. 3-A, 
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which demonstrates this property for M = 3. In Fig. 3-B, a 
typical appearance of the input sequence for this filter x(n) 
is depicted. After convolving x(n) with the impulse respon-
se h(n), nonzero samples of x(n) are unaffected, except for 
a scaling factor c. 

In frequency domain (Z-domain), the Nyquist-M pro-
perty is manifested as well. If H( z-1) satisfies (2.1), it can 
be shown that 
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where core of the DFT WM = exp(-j2π / M). As depicted in 
Fig. 4, the frequency response of H( z-1 WM

k) is the shifted 
version H{ exp[-j(ω+2kπ / M)]} of H[ exp(-jω)]. Finally, 
we can conclude that all M uniformly shifted versions of 
H[ exp(-jω)] add up to an allpass filter. Covering complete 
relative frequency band (0, 2π) corresponds to the Power 
Complementary (PC) property of the filter bank. 

 
Fig. 4. Images of an impulse response of the Nyquist-M filter. 

2.2 Nyquist-M Process 
To deal with optimum energy compaction solution for 

the subband coder considered in this paper, one must first 
define N-periodic optimum compaction of an N-periodic 
WSCS process. Definition of optimum compaction of WSS 
signals described in [4], involves an LTI filter H( z-1) for 
which H( z-1) H*( z) is Nyquist-M. For an LPTV system 
H( k, z-1) let’s employ the adjoined filter Ha ( k, z-1), firstly 
defined for Nyquist-2 filter by Schwartz particularly for 2-
channel subband coder in [7], whose impulse response 
ha( k, l) relates to the impulse response h( k, l) of H( k, z-1) 

),(),( * klhlkha =   . (2.5) 

It can be observed [8] that the adjoined of an LTI system 
with transfer function H(z-1), has transfer function H*(z). 
Thus analogy of system with transfer function H( z-1) H*( z) 
in the LTV (Linear Time-Varying) case is the LTV system 
H( k, z-1) Ha ( k, z-1). Following definition constitutes LTV 
Nyquist-M filter. 
 

Definition 2.1: LTV Nyquist-M Filter 

Consider the arrangement in Fig. 5-A with H( k, z-1) LTV 
filter with impulse response h( k, l). Then H( k, z-1) is Ny-
quist-M if for all integers n and m, following equality holds 

)(),( mncMmMnh −= δ   , (2.6) 

where δ denotes Kronecker delta. 

Clearly, should H( k, z-1) be an LTI filter H( z-1), (2.6) 
reduces to the definition given for LTI Nyquist-M filters 
(2.3). However, at the first sight it may appear that the fol-
lowing formula represents more direct analogy to the LTI 
case. For all integers m, n 

)(),( ncmmMnh δ=+   . (2.7) 

However, there are at least two reasons to favour weaker 
requirement (2.6). The first one, and more pertinent for this 
reasoning, is related to the following consequence of the 
Nyquist-M property in LTI case. Referring again to Fig.5-
A with H( k, z-1) being LTI H( z-1) with type one polyphase 
components E0(z), E1(z), …, EM-1(z). Then, H(z-1) H*(z) is 
Nyquist-M if and only if for all ω 
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One can easily observe, that E0(z), E1(z), …, EM-1(z) respec-
tively represent the LTI systems relating the 0-th, 1-st, …, 
(M-1)-th samples within a period of M samples, to the M-th 
samples of s(k). It is exactly this fact that is used to link the 
optimum compaction process to an optimum solution for 
H0 ( z-1) in the WSS case. 

Recall from definitions in section 1, that H~
00 ( z-1), 

H~
01 ( z-1), …, H~

0(M-1) ( z-1) respectively represent an LTI 
systems relating the blocked 0-th, 1-st, …, (M-1)-th samp-
les within a period of M samples, to the blocked M-th sam-
ples of s(k), when H( k, z-1) is WSCS with period N. Thus, 
the comparable result for WSCS case would be as follows: 
for N-periodic H( k, z-1), the product H( k, z-1) Ha ( k, z-1) is 
Nyquist-M if and only if for all ω, 
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In general, values of h(k,l) playing a part in (2.9) are only 
those that correspond to the M-th values of k within a pe-
riod of M samples. On the other hand (2.7) also affects 0-
th, 1-st, …, (M-1)-th values of k in h(k,l). As general con-
sequence, (2.7) implies (2.9), but isn’t equivalent to (2.9). 

The second reason for preferring (2.6) goes beyond 
the application of Nyquist-M filters in this work. As alre-
ady indicated in subsection 2.1 for WSS case, a key advan-
tage of LTI Nyquist-M filters dwells in their usefulness for 
M-fold interpolation process, see Fig. 5-B. 

Then, an LTI H( z-1) is Nyquist-M if and only if for all 
n and x(n), y(Mn)=x(n). Obviously, only the M-th samples 
of the input and output of H( z-1) in Fig. 5-B are pertinent 
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to this requirement. Thus, condition (2.7) demands more 
than needed. Theorem 2.1 below shows that (2.6) is indeed 
equivalent to the above interpolation requirement. 

 
Fig. 5. Analysis filter cascaded with decimator (A) interpolator 

cascaded with interpolation filter (B). 
 

Theorem 2.1: In Fig. 5-B, suppose H( z-1) is LTV filter 
H( k, z-1). Then for all k and x(k), 

( ) ( )kxMky =  (2.10) 

if and only if H( k, z-1) is Nyquist-M. 
 

Proof: Clearly, if (2.10) is expressed as the requirement 
that for all x(k) and k 
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it is satisfied by using (2.6) with c = 1. 

It is also known that in LTI case, H( z-1) is Nyquist-M 
if and only if E0( z) = c, possibly conveniently with c = 1. 
Then, the following Theorem 2.2 proves a comparable re-
sult for the N-periodic LPTV case. 
 

Theorem 2.2: In Fig. 5-B, suppose H( z-1) is LPTV filter 
H( k, z-1) with period N. Consider H~

00( z-1) defined in 
(1.3), (1.4). Then H( k, z-1) is Nyquist-M, if and only if 

IzH =− )(~ 1
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Proof: Because of [h~
mn( k, l)]pq = [h~

mn( k – l)]pq with l = 0, 
(2.12) is equivalent to the requirement, that for all k and  

1,0 −≤≤ Nqp  , 
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where the second equality follows from 0 ≤ p, q ≤ N–1. Be-
cause of N-periodicity of h(k,l) this is equivalent to (2.6). 
Detailed proof for 2-channel filter bank is available in [7]. 

2.3 Optimum Energy Compaction with 
Nyquist-M Filter 
In the following section, reader’s attention shall be 

turned to the Nyquist-M property of the blocked submat-
rices H~

00( z-1), H~
01( z-1), …, H~

0(M-1)( z-1), respectively. 
 

Theorem 2.3: Consider an N-periodic analysis filter 
H( k, z-1), its adjoined filter Ha( k, z-1) and blocked submat-
rices H~

mn( z-1), defined in (1.3) and (1.4) for m, n = 0, 1 to 
M-1. Then H( k, z-1) Ha( k, z-1) is Nyquist-M if and only if 
(2.9) holds. 
 

Proof: Consider a structure in Fig. 6 and define for i = 0, 1 
to M-1, 

)()( iMkrkri −=   . (2.13) 

Define the N-fold blocked version of ri( k) as 

[ ]T))1((),....()(~ iNNkMriMNkrkri −+−−=  (2.14) 

and 

[ ]TT
1

T
1

T
0 )(~),...,(~),(~)(~ krkrkrkr M −=   . (2.15) 

Then the blocked polyphase LTI system relating s~(k) = 
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1
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i
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same manner as (2.14)} to r~(k), has transfer function 
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Thus, the system relating x~
0(k) to r~

0(k) has transfer func-
tion 
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The result then follows from Theorem 2.2, expression 
(2.12), establishing analogy to the LTI case mentioned 
earlier. 

 
Fig. 6. Concatenation of the analysis filter, its adjoined counter-

part and the M-fold decimator. 
 

Definition 2.2: Optimum Compaction Process 

Consider Fig. 5-A, with x(k) WSCS with period N, and 
H( k, z-1) LPTV with period N. Then, H( k, z-1) is an opti-
mum compaction filter for x(k), if subject to being Nyquist-
M and for some index set {k0, k1, …, kN-1} = {0, 1, …, N-1} 
it simultaneously maximizes partial sum of variances of 
v(k): 
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for all 0 ≤ l ≤ N–1, 0 ≤ v ≤ M–1. 
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It can be observed, that the above definition targets to 
accommodate the fact that v(k) is WSCS with period N. 
Consequently, N variance values in total have to be consi-
dered. One can call the optimum compaction filter a cano-
nical filter, if in (2.17) ki = i. It shall be noted however, that 
even canonical filter is not unique. This is consistent with 
properties of compaction filters for WSS processes [4]. 

The main result of this paper follows. 
 

Theorem 2.4: Recall Fig. 1 with Hi ( k, z-1) N-periodic and 
x(k) WSCS with period N. Then the H0 ( k, z-1) provided by 
the solution to the Theorem 1.1 is an N-periodic optimum 
compaction filter for x(k). 
 

Proof: Consider any N-periodic canonical optimum com-
paction filter H( k, z-1) of signal x(k). Consider the N × MN 
matrix 
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with H~
mn( z-1) for m, n = 0, 1, …, M–1 defined in (1.3) and 

(1.4). We can observe that by Definition 2.2, H( k, z-1) is 
Nyquist-M filter. Hence, referring to Theorem 2.3, condi-
tion (2.9) holds. For H( k, z-1) being a canonical optimum 
compaction filter, the sum of partial variances of subband 
signals 
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has to be maximized for all 0 ≤ l ≤ N–1. The expression in-
side brackets represents a unitary transform of positive se-
mi-definite Hermitian symmetric matrix Sx(ω). Due to pro-
perties of Hermitian symmetric matrices and under (2.9), 
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is maximized for all 0 ≤ l ≤ N–1, if and only if 
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where λi(ω) are the eigenvalues of SX. Notation ii refers to 
diagonal elements of PSD matrix. 

When arguing in a similar way as in [9], the implica-
tion is such that partial sums in (2.19) are simultaneously 
maximized if and only if 
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where λn (ω) ≥ λn+1 (ω) for almost all ω. These are conditi-
ons from Theorem 1.1, met by H0 ( k, z-1). Hence the result. 

3. Simulation Model 
In the previous section a consistent derivation was 

provided, showing that optimum compaction filter is one 

possible solution to the maximization of the coding gain of 
the multirate subband coder with maximally decimated fil-
ter banks. 

To verify efficiency of subband coding as far as prac-
tical expectations on coding gain values are concerned, a 
Matlab simulation model of the multirate subband coder 
has been created, adopting the results derived above in this 
paper and in [9]. 

A topology of the two-channel filter bank used for 
simulation is depicted in Fig. 6. LPTV analysis FIR filters 
Hi ( z-1, N) and synthesis filters Fi ( z-1, N), represented by 
their respective impulse responses hi1, hi2 and fi1, fi2, are 
pertinent to be used for WSCS signal with N = 2. In other 
words, a WSCS input waveform is processed by the filters, 
which alternate between impulse responses hi1and hi2, as 
well as between fi1 and fi2. While action of decimators and 
interpolators has already been described in this work, quan-
tities qi1, qi2 substitute for a quantizing noise in the Matlab 
model. The average power of the quantizing noise depends 
on the statistic of particular subband signal vi and number 
of bits allocated to the ADC, as governed by (1.2). Due to 
the Periodically Dynamic Bit Allocation (PDBA), simula-
ted source of quantizing noise also alternates between va-
lues qi1and qi2. 

 
Fig. 6. Two-channel maximally decimated filter bank used for 

simulation. 
 

Since it is not a trivial task to obtain a real cyclostationary 
signal with period N = 2 to serve as an input for the sub-
band coder, two artificial signals were synthesized instead. 
The first input sequence 

( ) 





⋅=− iix

8
2sin1121
π  , 

( ) 





⋅= iix

8
6sin5.021
π  , (3.1) 

obviously E[ x(k)] = mx(k) = mx(k+2) holds. The second test 
input sequence 

( ) 





⋅+






⋅= iiix

8
7sin25.0

8
sin12

ππ  (3.2a) 

for 0 ≤ (i mod 2P) ≤ P and 

( ) 





⋅+






⋅= iiix

8
7sin5.0

8
sin75.02

ππ  (3.2b) 

for P ≤ (i mod 2P) ≤ 2P, for some large number P. 
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Discrete spectra of both input test trains are depicted 
in Fig.7 - A, B with windowing effects neglected. Both the 
above-presented trains are no doubt purely deterministic 
waveforms, hence being stationary in nature. But for the 
purpose of subsequent simulations, these interlaced sinu-
soidal waveforms will serve as a trivial representation of 
WSCS signal, with individual sinusoid representing a WSS 
element within a period of cyclostationarity N = 2. 

 
Fig. 7. Discrete spectra of input test waveforms, (A) defined by 

formula (3.1) and (B) formula (3.2). 

The core element in the Matlab model used to demonstrate 
subband coder functionalities is a power symmetric Quad-
rature Mirror Filter-bank (QMF), designed for the simplest 
case of two-channel (M = 2) subband coder with period of 
cyclostationarity N = 2. Power symmetric QMF itself re-
presents special class of alias free digital systems with low 
complexity and reasonably low amplitude distortion (3.3) 

])()()()([
2
1)( 0110 zHzHzHzHzT −−−=  . (3.3) 

For detailed derivation of how to compensate for the alia-
sing and amplitude distortion in the QMF structure, the 
reader shall kindly refer to [8]. Since the QMF will be em-
ployed as an element in more complex structure, only most 
important results are reviewed below.  

Assuming that low-pass H0(z) used in QMF is power 
symmetric, it can be seen, that if the high-pass H1(z) is de-
signed so that 

)(~)( 01 zHzzH N −−= −  , (3.4) 

for some odd N, then (3.3) is reduced into T( z) = 0.5 z -N, 
i.e. to the perfect reconstruction system. To achieve a reali-
zable system, filters H0(z), H1(z) have to be FIR (to avoid 
instability of their paraconjugate counterparts used in po-
wer symmetry definition). The synthesis filters are then gi-
ven by [8] 

)(~)( 00 zHzzF N−=  , )(~)( 11 zHzzF N−= . (3.5) 

All the above formulae for analysis filter H1(z) and synthe-
sis filters can be respectively rewritten in time domain as 

)()1()( *
01 kNhkh k −−=    , (3.6a) 

)()( *
00 kNhkf −=    , (3.6b)  

)()1()( 01 kNhkf k −−=    , (3.6c) 

reducing the design of the QMF into the design of causal 
and power symmetric low-pass H0(z). 

Totally four filter designs were tested by the author of 
this paper, differing in stop-band attenuation and relative 
transition bandwidth, as reviewed in Table 2. The design 
procedure itself comprises a calculation of zero-phase half-
band filter H(z) = H~

0(z) H0(z) of an even order 2K, for so-
me odd K, using Sparks-McClellan algorithm from Matlab. 
The low-pass filter H0(z) of order K, was then extracted 
from H(z) by spectral factorization. Resulting normalized 
distortion function of QMF (3.3), exhibits ripple as low as 
0.5⋅10-3 dB for least stringent design specification and 
3⋅10-3 dB for most stringent one. 
 
 

design 
number 

min.stopband 
attenuation 

transition 
bandwidth 

half-band 
filter order 

stopband 
peak ripp. 

1 30 dB 0.1 pi 74 4.54 ⋅ 10-4 

2 30 dB 0.3 pi 26 2.35 ⋅ 10-4 

3 20 dB 0.1 pi 50 3.61 ⋅ 10-3 

4 20 dB 0.3 pi 18 1.95 ⋅ 10-3 

Tab. 1.  Specifications of the filters used for simulation. 

Basic topology of the simulation model for WSCS-like sig-
nal is depicted in Fig. 8. The outward QMF, which consists 
of the filters H0( z -1), H1( z -1), F0( z -1), F1( z -1) and works 
with input signal x and output signal y, cuts the total fre-
quency band by half, allocating low-frequency and high-
frequency components to the subband signals x’1 and x’2, 
respectively. Indeed, using two non-overlapping filters in 
the analysis bank brings decorrelation to the subband sig-
nals. Since for the chosen test inputs, as defined by (3.1) 
through (3.2b), the energy of the train of pulses of sinuso-
idal waveforms is well concentrated far from π/2, the de-
correlation is almost perfect. 

The purpose of the imbedded QMF structure, having 
its outputs connected to switches, dwells in the decorrela-
tion of the frequency components that originate from sam-
ples (blocks of samples in case of x2) arriving to the input 
of the WSCS subband coder in different time instants, wit-
hin a period of cyclostationarity. By using synchronous 
switching of the time-multiplexed components of the input 
signal, the simulation structure effectively creates four non-
overlapping filters of equal bandwidth, that separate fre-
quency components of the input signal, hence decorrelating 
them in the sense required by Theorem 1.1, condition 1. 

As for the amplitudes (variances), test input signals 
are adjusted in such way, that largest component in spect-
rum is paired with the smallest and the second largest com-
ponent is paired with the second smallest. Since the spect-
rum of the signal has non-zero values in a narrow area 
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around discrete spectral lines, the subband signals appro-
ximately fulfill the second rule of Theorem 1.1. 

 
Fig. 8. Topology of the simulation model with tree-structured QMF. 

To evaluate the coding gain reached by the application of 
subband coding on a particular input signal, the appropriate 
quantizing noise model had to be implemented into Matlab 
code. In the simulation model, a random noise with uni-
form probability density function is generated by rand() 
function from Matlab tool-kit. Values of the noise are dis-
tributed within amplitude interval <-0.5; 0.5>, the variance 
is adjusted via suitable multiplicative constant. Such noise 
model is believed to represent well a real A/D converter. 
The same random sequence is used to derive values of the 
quantizing noise for both the subband signals vi and those 
of reference quantizing noise of a  PCM coder. 

Results gained from Matlab simulation model, that 
carries out processing of WSCS signals by a subband coder 
with maximally decimated filter banks, are listed in Tab. 2, 
respectively for test input trains x2 and x1. 

For all four designs examined and for input signal x2, 
the coding gain exceeds 10 dB and varies a little with chan-
ging the filter order. This insensitivity to the change of the 
filter order shall be contributed to the narrowband charac-
ter of the spectra of test input sequence, which doesn’t con-
tain much energy in the vicinity of subband borders. Three 
simulations were performed for each design and averages 
were calculated. 
 

WSCS filter bank simulation results signal X2 

design no. quant. noise ref. qnt. noise cod. gain [dB] 

1 0.223 2.44 10.34 

3 0.228 2.44 10.31 

2 0.226 2.43 10.32 

4 0.233 2.44 10.19 
 

WSCS filter bank simulation results signal X1 

design no. quant. noise ref. qnt. noise cod. gain [dB] 

1 1.53 6.57 6.34 

3 1.59 6.46 6.09 

2 1.62 6.55 6.06 

4 1.63 6.45 5.98 

Tab. 2.  Coding gain results for test signals X2 and X1. 

Due to the symmetry of spectra of x1 with respect to 
π/2, coming from the nature of sum of two interpolated 
sinusoids, the coding cannot benefit from pairing (orde-
ring) of the subband signals according to the second rule of 
Theorem 1.1. In fact both lines in each pair formed within 
the period of cyclostationarity N = 2 have the same energy. 
Hence the coding gain of 6.1 dB shall be fully attributed to 
the decorrelation of subband signals. This result allows the 
reader to build a specific feeling for judging individually 
the importance of the two rules specified in Theorem 1.1. 

3.1 Conclusion on Simulation Results 
The results show coding gain of 10.3 dB for input 

signal x2, which has canonical decay of PSD towards hig-
her frequencies, and 6.1 dB for input signal x1, having PSD 
symmetric with respect to relative frequency π/2. Compa-
rative results for WSS subband coder show coding gain of 
4.2 dB for signal x2. Hence ad hoc expectation of the co-
ding gain of two-channel subband coder for WSCS signals 
then falls within the range 6 – 12 dB, indicating one or two 
bit savings with respect to standard PCM coder.  

Such results are believed to justify complexity of pre-
sented theory and hopefully will encourage further investi-
gations in the area of subband coding.  
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