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Abstract. In the paper a MATLAB–based method for 
simulating transient phenomena in linear hybrid circuits 
containing parts with both lumped and distributed pa-
rameters is presented. Distributed parts of the circuit are 
multiconductor transmission lines, which can generally be 
nonuniform, with frequency–dependent parameters, and 
under nonzero initial voltage and/or current distributions.  
In principle a solution is formulated using the modified 
nodal analysis method in the frequency domain. Subse-
quently an improved fast method of the numerical inver-
sion of Laplace transforms in the vector or matrix form is 
applied to obtain solution in the time domain 
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1. Introduction 
A possible method which is general enough to be 

used for the analysis of hybrid circuits is the modified 
nodal analysis method (MNA) [1, 2]. In [3] this technique 
is used for the time–domain simulation of multiconductor 
transmission line (MTL) systems using the Matlab lan-
guage. The circuit configuration under consideration can 
be illustrated by the block diagram in Fig.1. 
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Fig. 1. Linear hybrid circuit with MTL sections 

In [3], an MNA matrix equation describing MTL systems 
under nonzero initial conditions is formulated and the ef-
fectiveness of the solution in terms of the Matlab program 

environment is shown. Unlike in [1, 2], where the modal 
analysis technique is used, admittance matrices of the 
MTLs are computed by means of chain matrices. In this 
way the inhomogeneities of MTLs can easily be considered 
if necessary. To incorporate nonzero initial conditions into 
MTLs, matrix convolution integrals must be solved. In the 
Matlab language, this can effectively be made by the FFT 
when three-dimensional arrays are utilized [4]. From a 
general point of view, the solution is performed in the 
frequency domain and then a fast NILT method in the 
vector or matrix form is used to obtain the solution in the 
time domain. Unlike in [3], an improved NILT method 
based on the FFT and a special quotient-difference algo-
rithm is used here to ensure both high speed of computa-
tion and the necessary precision of simulation. Where pos-
sible, the Matlab language capabilities to process multidi-
mensional arrays in parallel are utilized with advantage. 

2. MNA Matrix Equation Formulation 
As shown, for example in [1, 2], a modified nodal 

analysis matrix equation in the time domain can be written  
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where CM and GM are the N×N constant matrices with 
entries determined by the lumped memory and memoryless 
components, respectively, vM(t) is the N×1 vector of node 
voltages appended by currents of independent voltage 
sources and inductors, iM(t) is the N×1 vector of source 
waveforms, ik(t) is the nk×1 vector of currents entering the 
k-th MTL, and Dk is the N×nk selector matrix with entries 
di,j∈  {0,1}mapping the vector ik(t) into the node space of 
circuit. To get a frequency-domain representation of the 
last equation the Laplace transform is applied  
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MTLs consist of Nk=nk/2 active conductors, i.e. they can be 
regarded as 2Nk-ports. Then Ik(s) in (2) is formed to con-
tain vectors of currents entering the input and output ports 
as Ik(s) = [ Ik

(1)(s), Ik
(2)(s) ]T, and they result from the basic 

MTL matrix equation as follows.  
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Suppose a generally nonuniform MTL of length l, 
with per-unit-length matrices R(x), L(x), G(x), and C(x). In 
the time domain a MTL matrix equation has the form [5] 

the MTL is described by (6) in the decomposed form:  
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, (3) After some manipulations and taking into account nonzero 
initial conditions the admittance equations have the form:  

and, after the Laplace transform has been used, (3) leads to  
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where submatrices Y11(s)=-Φ12

-1(s)Φ11(s), Y12(s)=Φ12
-1(s), 

Y22(s)=-Φ22(s)Φ12
-1(s), and Y21(s)=Y12

T(s), because of the 
reciprocity of the MTL. In the case of a uniform MTL the 
equality Y11(s)=Y22(s) is also valid. Considering the k–th 
MTL Eqn. (13) is written in the compact matrix form  

Here V(x,s) = L[v(x,t)] and I(x,s) = L[i(x,t)] are column 
vectors of the Laplace transforms of voltages and currents 
at distance x from MTL’s left end, respectively, v(x,0) and 
i(x,0) are column vectors of initial voltage and current 
distributions, respectively, and 0 means zero matrix.  Z(x,s) 
=R(x)+sL(x) and Y(x,s) =G(x)+sC(x) are series impedance 
and shunting admittance matrices, respectively. In the 
compact matrix form (4) changes to  
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Finally, after substituting (14) into basic MNA equation (2) 
the resultant MNA equation can be written in the form: 
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Taking then W(0,s) as the solution for x=0 (MTL input) 
the solution for x=l (MTL output) can be written as [6] 
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0 wNWW ∫+= ΦΦ ,  (6) To solve voltages and currents at the x coordinate from the 
beginning (1) of the MTL, Eqn. (12) can be written as  

where Φ0
l(s) is the integral matrix (matrizant) defined with 

an infinite series of matrix integrals or with so-called 
product-integral, see, for example, [6]. In the case of a 
uniform MTL the matrix exponential function is used for 
its exact calculation as 
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where Φ(x,s) is the partial chain matrix computed via (8) 
and [V(0)(x,s),I(0)(x,s)]=W(0)(x,s) is expressed by matrix 
integral (11) while replacing indices l by x. As this integral 
expression is of the convolution type, the method based on 
the FFT can be used for its calculation. In [4] it is proposed 
to use three-dimensional arrays when the Matlab capabili-
ties to treat multidimensional arrays in parallel are utilized. 
The necessary voltage V(1)(s) and current I(1)(s) pertaining 
to the k–th MTL can be extracted from the equation  

In general, however, only an approximate integral matrix 
can be calculated. This can be done by dividing the MTL 
into a sufficiently large number m of sections assuming 
that M(s) is constant in each of them. Taking then into 
account the basic property of matrizant the following 
recurrent formula holds: 
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and from Eqn. (14), respectively. 

with  as the identity matrix, ∆xj=xj-xj-1, 
j=1,2,…,m, and x0=0, xm=l, and 

E=)(~ 0
0 sΦ

jjj xx ,1−∈ζ . In the case 

of uniform MTL the result is the same as if calculated by 
(7).  

3. Advanced FFT-Based NILT Method 
The original f(t) to a Laplace transform F(s) can be 

expressed by the Bromwich integral  
In terms of the multiport theory the integral matrix 

acts as a chain matrix Φ(s). Thus after denoting  
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Tssssl )](),([)(),( )2()2()2( IVWW −== , (10) on the basic assumption |f(t)|≤Keαt, K real positive, α as an 
exponential order of the real function f(t), t≥0, and F(s) 
defined for Re[s]>α. Integrating (18) numerically an ap-
proximate formula in the discrete form f̃k=f̃(kT), k=0,…,N-
1, can be derived [7]: 
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with T and Ω=2π/(NT) as the sampling periods in the 
original and the transform domains, respectively. The error 
analysis has resulted in an approximate formula for c: 

rEc ln2 ⋅Ω−≈ πα  , (21) 

where Er denotes the desired relative error. The finite sum 
in (19) is evaluated by the FFT, assuming N=2m, m is an 
integer. This enables obtaining a set of N points in a single 
calculation step. Consequently, the required maximum time 
is taken as tm=(M-1)T, with M=N/2 as the number of re-
sultant computed points. To make the error come closer to 
its theoretical value Er the infinite sum in (19) must be 
evaluated as accurately as possible. For this purpose just 
the quotient-difference algorithm is used to accelerate its 
convergence. Thus taking into account only the first 2P+1 
terms of this sum the continued fraction is found as [8] 
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which corresponds to the Padé rational approximation of 
power series. The q-d algorithm is illustrated in Fig.2.  
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Fig. 2. Quotient-difference algorithm diagram 

The first two columns are formed as 
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Then the coefficients dn, n=0,…,2P, are given by  

00 Gd =  , d  ,  , (27) )0(
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m=1,…,P. The evaluation of the continued fraction (22) 

can also be based on a recurrent formula. For any zk it is 
valid [8] 
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where n=1,…,2P, with the initial values 

01 =−A , 11 =−B , 00 dA = , and . 10 =B

Then the continued fraction (22) can be expressed as 

)()(),( 22 kPkPk zBzAPzv =  , ∀ . (30) k

Finally, v(zk,P) is used in (19) instead of the original 
infinite sum.  

To get the time-domain solution of (15) the fast 
vector version of the NILT method is used as follows [9]: 
If a transform is a vector FJ(s)=[F1(s),F2(s),…,FJ(s)]T then 
an NILT formula in the matrix form can be written as  
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where all the terms are matrices of superscribed sizes com-
puted according to (20), but formed for all the vector com-
ponents. The subscript <2> means that the FFT operation 
runs along the 2nd dimension (columns) but in parallel for 
all the rows. Vp

J×M is the matrix resulting from (29), 
RJ×M{ } denotes the operator of reducing the matrix 
dimension N→M and the symbol ◦ means the Hadamard 
product of matrices. Similarly, to find the time-domain 
solution of (16) the matrix version of the NILT method is 
the most effective to use [10]. The formula is  
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with terms as three–dimensional arrays of superscribed 
sizes. 

4. MATLAB Functions Definition 
Below the Matlab listings are presented for both the 

vector and the matrix version of the NILT functions. They 
are called with three parameters: ´F´ - the function defining 
the Laplace transform, tm - the maximum time, ´pl´ - the 
plotting function.  
%NILTV–FUNCTION DEFINITION (vector version)% 
function [ft,t]=niltv(F,tm,pl); 
global ft t; 
alfa=0; M=256; P=3; Er=1e-10;   % adjustable 
N=2*M; qd=2*P+1; t=linspace(0,tm,M); 
NT=2*tm*N/(N-2); omega=2*pi/NT; 
c=alfa-log(Er)/NT; 
s=c-i*omega*(0:N+qd-1); Fsc=feval(F,s); 
ft=fft(Fsc,N,2); 
ft=ft(:,1:M); delv=size(Fsc,1); 
d=zeros(delv,qd); e=d; 
q=Fsc(:,N+2:N+qd)./Fsc(:,N+1:N+qd-1); 
d(:
for r=2:2:qd-1  

,1)=Fsc(:,N+1); d(:,2)=-q(:,1); 

  w=qd-r; 
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  e(:,1:w)=q(:,2:w+1)-q(:,1:w)+e(:,2:w+1); %***** PLOT3 – FUNCTION DEFINITION ********% 
function pl3   d(:,r+1)=-e(:,1); 

  if r>2  global ft t x; 
    q(:,1:w-1)=q(:,2:w).*e(:,2:w)./e(:,1:w-1); m=length(t);tgr=[1:m/64:m,m];%65 time points 
    d(:,r)=-q(:,1); for k=1:size(ft,3) 
  end    figure; mesh(t(tgr),x(k,:),ft(:,tgr,k)); end     xlabel('t'); ylabel('x'); 
A2=zeros(delv,M); B2=ones(delv,M);   zlabel(strcat('f_{‘,num2str(k),’}’)); 

end   A1=repmat(d(:,1),[1,M]); B1=B2; 
z=repmat(exp(-i*omega*t),[delv,1]); 
for n=2:qd 
  Dn=repmat(d(:,n),[1,M]); A=A1+Dn.*z.*A2; 5. Examples   B=B1+Dn.*z.*B2; 
  A2=A1; B2=B1; A1=A; B1=B; As the first example, a linear circuit with 3 uniform 

(2+1)-conductor transmission lines is shown in Fig. 3 [1]. 
end 
ft=2*real(ft+A./B)-repmat(Fsc(:,1),[1,M]); 
ft=repmat(exp(c*t)/NT,[delv,1]).*ft; 
ft(:,1)=2*ft(:,1); feval(pl); 
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%****** PLOT1 – FUNCTION DEFINITION ******% 
function pl1 % multiple plotting into a 
single figure 
global ft t; 
plot(t,ft); xlabel('t'); ylabel('f(t)'); 
grid on;  

%****** PLOT
function pl2 % plotting into separate figures 

2 – FUNCTION DEFINITION ******% 

global ft t; 
for k=1:size(ft,1) 
  figure; plot(t,ft(k,:)); xlabel('t'); 
  yl
end 

abel('f(t)'); grid on;  
Fig. 3. Linear hybrid circuit containing three MTLs 

The per-unit-length matrices are given in [1]. The MTL 
lengths are: l1=0.05 m, l2=0.04 m, l3=0.03 m. An input 1V 
pulse with 1.5 ns rise/fall times and 7.5 ns width is applied.  

%*NILTM–FUNCTION DEFINITION(matrix version)% 
function [ft,t,x]=niltm(F,tm,pl); 
global ft t x; 
alfa=0; M=256; P=3; Er=1e-10;   % adjustable 

To obtain the waveforms of nodal voltages or branch 
currents the Matlab function describing solution (15) is 
called by the niltv function. In Fig. 4 the input and output 
voltages and the current i2 are given as examples. 

N=2*M; qd=2*P+1; t=linspace(0,tm,M); 
NT=2*tm*N/(N-2); omega=2*pi/NT; 
c=alfa-log(Er)/NT; 
s=c-i*omega*(0:N+qd-1); Fsc=feval(F,s); 
ft=fft(Fsc,N,2); 
ft=ft(:,1:M,:); dim1=size(Fsc,1); 
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dim3=size(Fsc,3); d=zeros(dim1,qd,dim3); 
e=d; 
q=Fsc(:,N+2:N+qd,:)./Fsc(:,N+1:N+qd-1,:); 
d(:,1,:)=Fsc(:,N+1,:); d(:,2,:)=-q(:,1,:);  
for r=2:2:qd-1 
  w=qd-r; 
  e(:,1:w,:)=q(:,2:w+1,:)q(:,1:w,:)+e(:,2:w+1,:); 
  d(:,r+1,:)=-e(:,1,:); 
  if r>2  
    q(:,1:w-1,:) 
    =q(:,2:w,:).*e(:,2:w,:)./e(:,1:w-1,:); 
    d(:,r,:)=-q(:,1,:); 
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  end  
end  
A2=zeros(dim1,M,dim3); B2=ones(dim1,M,dim3); 
A1=repmat(d(:,1,:),[1,M]); B1=B2;  
z=repmat(exp(-i*omega*t),[dim1,1,dim3]); 
for n=2:qd 
  Dn=repmat(d(:,n,:),[1,M]); A=A1+Dn.*z.*A2; 
  B=B1+Dn.*z.*B2; 
  A2
end 

=A1; B2=B1; A1=A; B1=B; 

ft=ft+A./B;  
ft=2*real(ft)-
repmat(real(Fsc(:,1,:)),[1,M]); 
ft=repmat(exp(c*t)/NT,[dim1,1,dim3]).*ft; 

Fig. 4. Voltage and current waveforms 

However, to obtain voltage or current distribution along ft(:,1,:)=2*ft(:,1,:);feval(pl); 
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the MTL wires a Matlab function describing solution (16) 
is called by the niltm function, for examples see Fig. 5. 

 

 
Fig. 5. Voltage distributions along MTL wires (Example 1) 

 

As the second example, consider a linear circuit with 
2 identical (2+1)-conductor transmission lines in Fig. 6 [3]. 
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Fig. 6. Linear hybrid circuit with initially excited MTL1 

The MTLs are uniform, of the length l=0.2 m, and with 
per-unit-length matrices as given in [1]. The lumped-
parameter elements have the values: R=10 Ω, C=10 pF, 
and L=1 nH. On the first MTL1 wire the initial voltage 
distribution is non–zero, i.e.  
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otherwise 0)0,(1 =xv  ,  

while the MTL2 is considered under zero initial conditions. 
Here Eqn. (16) will again be used to solve waves on the 
MTL wires when the matrix version of the NILT method 
(32), i.e. the niltm function, is applied. Examples are 
shown in Fig. 7. 
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about 0.5 and 6 seconds (Fig. 4 and Fig. 5, respectively) 
when zero initial conditions were considered, and about 10 
seconds for nonzero ones (Fig. 7). The results can also be 
utilized e. g. to animate voltage/current waves propagating 
along MTL wires.  
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6. Conclusion About Author 
The paper deals with a method for simulating tran-

sient phenomena in linear hybrid circuits oriented to the 
application of the universal scientific–technical language 
Matlab. This program has proved to be a very effective tool 
for developing and verifying novel methods and algorithms 
just numerically. All computations were done on a 
2GHz/256MB PC. The technique under consideration leads 
to relatively fast computations, namely, the CPU time was  
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