
38 M. KARAFIÁT, F. GRÉZL, USING MATLAB FOR ANALYSIS OF TRAP SYSTEM 

Using MATLAB for Analysis of TRAP System 

Martin KARAFIÁT 1,2, František GRÉZL 1 
1 Dept. of Computer Graphics and Multimedia, Brno Univ. of Technology, Božetěchova 2, 612 00 Brno, Czech Republic 

2 Dept. of Computer Science, University of Sheffield, Portobello Street 211, S1 4DP Sheffield, United Kingdom 

karafiat@fit.vutbr.cz,  grezl@fit.vutbr.cz 

 
Abstract. This article describes a Matlab function for 
reading and processing file outputs from a structure of 
classifiers. These classifiers - neural nets - are used in 
speech recognition based on temporal trajectories (TRAP) 
of energy in frequency bands. This nonstandard approach 
is introduced and the program is presented. The utility of 
resulting figures is enhanced by the possibility of reading 
and displaying results from all critical bands at once. Re-
sulting analyses are more focused on the reliability of clas-
sifiers than on the basic accuracy measure. The first uses 
colors and their depth to display both cues, reliability and 
accuracy, in one informative picture. Others are focused 
on more precise measures, where it is possible to precisely 
define classifier mistakes. 
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1. Introduction 
We have been working on speech recognition using 

a system based on temporal trajectories (TRAP) from criti-
cal bands [5]. Several probability estimators are used, trai-
ned to classify input vectors into one of the target classes. 

An overview of TRAP use in different domains of 
speech processing until 2002 is summarized in Cernocky's 
habilitation thesis [5]. At the beginning of TRAP research, 
the TRAP-based features didn't reach the same recognition 
performance as standard MFCC or PLP coefficients. On 
the other hand, the combination of TRAPs with these fea-
tures always leads to improvement.  

TRAP features were used with success in Voice Acti-
vity Detection (VAD) task by A. Adami and P. Jain [3]. 
Here, TRAP features themselves brought a notable impro-
vement. TRAP system was also incorporated into a Qual-
comm-ICSI-OGI (QIO) feature extraction investigated for 
AURORA 2 competition [1]. Here the TRAP system was 
reduced to fit in AURORA restriction about total system 
latency and computation complexity.  

With further investigation of TRAP system, the featu-
res became better also in small vocabulary speech recogni-

tion tasks. An improvement over basic system is reported 
in [2]. However the performance of standard features is not 
mentioned here, we know that TRAP based features over-
comes them. Additional processing of critical band spectro-
gram was the important step to reach those results. Also 
phoneme recognition is a field where TRAP based features 
outperformed standard ones (see Schwarz's and Matejka's 
work [4]). 

Current work focuses on TRAP-based large vocabula-
ry continuous speech recognition in challenging meeting 
environments. The results obtained so far are preliminary, 
but quite promising. 

We focus here on analysis of the probability estima-
tors’ outputs. Correctness of these ones outputs was our 
primary interest. The estimator produces a correct estima-
tion if the output with the highest value has the same label 
as the transcription. Of secondary interest is the confidence 
of the estimator. The estimator is confident about its deci-
sion only if one output is high and the others are low. 

We created a Matlab function for analysing these net 
outputs to facilitate better understanding of the TRAP sys-
tem (see Section 3). 

2. TRAP System 
After speech segmentation into 25 ms frames and 

computation of the power spectrum, spectrum energies are 
integrated into M filter bands (15 Bark scaled trapezoidal 
filters) and logarithm is taken. The following processing is 
carried out in each frequency band: 

1. Actual frame with +/- 50 frames context is taken, gi-
ving a 101 points long TRAP vector. 

2. Mean and variance normalization of TRAP vectors. 
3. Hamming windowing. 
4. Linear transformation. 

The resulting vector is put into the band probability esti-
mator - a three layer neural net. This net is trained to clas-
sify the input vector into one of the N classes. The estima-
tor has an input layer the size of the input vector, one hid-
den layer and a third output layer, the size of which is 
equal to the number of classes N. We used 29 phonemes as 
target classes. 
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Fig. 1.  TRAP system. 

We obtain an N point long vector at the output of each 
band probability estimator. All output vectors are concate-
nated into a vector M × N points long. This vector goes 
through a negative logarithmic nonlinearity and then forms 
the input for the merger probability estimator. Merger pro-
bability estimator is also a three layer neural net trained to 
classify the input vector into the classes. The first layer has 
M × N points and the third layer again has N points - the 
same target classes as the band probability estimators. Its 
function is to merge the particular band estimations into 
one final posterior probability vector. The scheme of the 
whole TRAP system is shown in Fig. 1. 

3. Description of Matlab program 
As mentioned above, our function works with neural 

net outputs. Program quicknet [7], which is used for train-
ing and evaluation of these networks, saves results into the 
file in rap format (see section 3.1). These files represent 
outputs from band probability estimators and are used as 
inputs for our function where each band (file) can be pro-
cessed separately or outputs from all critical bands can be 
read and analysed at the same time.  

To begin with the program loads the desired outputs 
from labelfile into memory and than opens one or all input 
rap files according to the input specification. It next reads 
the first number (amount of output classes) and then starts 
to fill frame-by-frame the matrix of neural net outputs. The 
analysis is performed when the end of the sentence is rea-
ched. Finally, the system waits for any keyboard press be-
fore it continues processing the next sentence. 

The program performs three kinds of analysis: 

1. Accuracy and reliability in each critical band. 
2. Comparison between desired outputs and outputs 

generated by networks. 
3. Displaying critical band outputs for each class (pho-

neme) separately. 

3.1 Input Data and RAP Format Structure 
Data in RAP format are saved in uncompressed bina-

ry form in the order depicted in Fig. 2. 

The file starts with the number of neural net output 
classes (neurons in output layer).  Results from all output 
neurons for each input frame are concatenated into the 
small cells. The cell header is the frame number in the in-
put sentence (indicating position in sentence) in integer 

form. The body is a block of neural net outputs in floating 
point form. A stream of these cells generates an output sen-
tence. The number -1 (in integer form), is used as an End 
of Sentence Identifier (ESI), and is added after the last cell 
of each sentence for easy detection of the sentence end. 

No. of Classes
(N)

integer - 2B

Frame identifier
(i=0)

integer - 2B

Outputs for i-th frame

Class 0
Float
4B

Class 1
Float
4B

Class N
Float 4B

Sentence

Frame

Frame Identifier
(i=x)

integer - 2B

Outputs for i-th frame

Class 0
Float
4B

Class 1
Float
4B

Class N
Float 4B

End of sentence
identifier  (-1)
integer - 2B

Frame identifier
(i=0)

integer - 2B

Frame identifier
(i=y)

integer - 2B

Outputs for i-th frame

Class 0
Float
4B

Class 1
Float
4B

Class N
Float 4B

End of sentence
identifier  (-1)
integer - 2B

 
Fig. 2.  Structure of RAP file. 

Correct reading of integer and floating point parts is aided 
by the fact that each non-negative integer is followed by an 
exact count of floating point numbers, whereas a negative 
integer (ESI), is followed by a single integer. 

In general our function opens one or all input rap fi-
les, then detects the amount of output classes, and finally 
fills a matrix of neural net outputs frame-by-frame. Outputs 
are numbers between 0 and 1 and their sum is 1 – they re-
present a posterior probability vector 
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where f is the frame number, c is the output class number, 
and b is number of critical band. 
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Fig. 3.  Color scheme for functions R(f,b) and T(f,b). 

3.2 Displaying Reliability and Accuracy 
of Decisions in Critical Bands 
The purpose of this analysis is to display a visualiza-

tion of the reliability of network outputs. The input is the 
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  T(i,:) = round(15*max_in_crb(i,:)); value of the strongest output (real decision) R(f,b) and the 
value of the desired output T(f,b) (which corresponds to the 
label), where f is the frame number and b is number of cri-
tical band. We decided to map R(f,b) and T(f,b) into green- 
red color scheme according to figure 3, in order to generate 
a compact display of the information. 

  for ii=1:NoOfFrames+1 
    R(i,ii) = round(15*XXnorm(ii,... 
                    L(ii),i)); 
    M(i,ii) = R(I,ii)*16 + T(i,ii); 
  end 
end 
figure(1); 

The value of R(f,b) is always either larger (bad deci-
sion) or the same as the T(f,b) value. Therefore output co-
lors always lie either on the main diagonal or under it. 
Dark color expresses an unreliable network decision. 
Bright color expresses a reliable network decision. Green 
expresses a correct decision. Red expresses an erroneous 
decision. 

colormap( colormap1); 
image( M); 

Resulting display for an utterance of digit “two” is shown 
in fig. 4. The procedure is discussed in par. 1 of sect. 3.5. 

3.3 Comparison Between Real 
and Desired Network Outputs 
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We use matrices that were already created according 
to eqn. (2) for this analysis. The range of this data is from 0 
to 15 and complex color mapping is not important. Conse-
quently, we create a new colormap using only a black and 
white color scheme. The highest value (15) is represented 
by a light grey color and zero is represented by black. 

This is programmed as: 
V2 = (3:12/15:15)/15; 
colormap2 = [V2’, V2’, V2’]; 

Resulting display for an utterance of digit “two” is shown 
in fig. 5. The procedure is discussed in the paragraph 2 of 
the section 3.5. 
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Fig. 4.  Matrix of reliability decision for an utterance of digit “two”. 

Adjusting of data and Matlab color scheme is important for 
mapping operation: 

1. Color scheme – A colormap (Matlab color look-up 
table) is indexed in the range 0 to 255, so that blue 
is set to zero and the balance between red and green 
depends on the index of the corresponding color in 
figure 3. The indexing starts at point (0,0) and con-
tinues from left to right until point (16,16). This is 
programmed as: 
V1 
for ii = 0:15 

= (5:10/15:15)/15; 

  for y = 0:15 
    RGB = [V1(ii+1)*(V1(16-y)),... 
           V1(ii+1)* V1(y+1), 0]; Fig. 5. Comparison of values in desired output (Up) and the 

strongest output (Down) for an utterance of digit “two”.     colormap1(ii+y*16+1,:) = RGB; 
  end 
end 

3.4 Critical Band Outputs 
for Each Class Separately 

2. Data – The input data matrix is transformed accor-
ding to the equation: 

[ ]
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Displaying of detailed information about values in 
critical bands for each output class gives more information 
about the TRAP system. We can easily recognize classes 
where the network makes mistakes, the drawback being a 
large number of graphs. where L(f) is the index of the desired output accor-

ding to the known label file. This is programmed as: We use the same colormap as in section 3.3 for dis-
playing graphs and each output is multiplied by 15 in order 
to scale them into this  colormap range.     

for i = 1:NoOfBands 
  [max_in_crb(i,:),I] = max(X(:,:,i)’); 
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Outputs for an utterance of digit “two”, for 5 classes 
(“h#”, “ax”, “er”, “uw”, “ow”), are displayed in fig. 6.  
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Fig. 6.  The strongest outputs in classifier’s classes “h#”, “ax”,
 “er”, “uw” and “ow” for utterance of digit “two”.

 

3.5 Summary of Analyses 
1. Reliability and accuracy – The output from this ana-

lysis is a single picture that allows us to quickly esti-
mate the quality of the classifiers. The analysis shown 
in fig. 4., tells us the system is confident in recognition 
of silence (symbol “h#”) only, particularly in the 13th 
critical band, which generates the most reliable results. 
In low frequency bands the reliability of decisions falls 
for the whole utterance. In high frequency bands the 
classifiers generate confident but erroneous decisions in 
classifying the phonemes “t” and “uw”. However, we 
are unable to identify the label(s) that were chosen in-
stead of the desired label. 

2. Comparison between desired outputs and outputs 
generated by networks – The purpose of this analysis 
(see figure 5) is very similar to the previous one, but it 
enables us to see that in the “t” and “uw” segments the 
output level is almost zero in all bands. This means that 
the networks are unable to recognize these phonemes 
from individual bands but this does not exclude the 
possibility that all unreliable band classifiers may con-
verge to the right estimation at the output of the merger 
(main classifier). 

3. Critical band outputs for each class separately – 
This analysis displays all information from the classifi-
ers grouped by output class. We can see from figure 6 
that the outputs for phoneme “h#” (silence) are high in 
segments where phonemes “t” and “uw” are the desired 
classes. This shows that many band classifiers are gene-
rating phoneme “h#” instead of the correct label, which 
is an unanswered issue from both previous analyses. 

4. Conclusions 
Even if we perform the core of our experimental work 

with software different from Matlab (quicknet and a combi-
nation of C-programs and shell scripts), Matlab is an excel-
lent tool for visualization of classifier results. The genera-

ted figures help us to assess the performance of neural nets 
for different training and testing data and different experi-
mental setups. The created program can be used to evaluate 
the results of any classifier producing posterior probabili-
ties on data, where reference labels are available.  
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