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Abstract. The paper describes the exploitation of feed-for-
ward neural networks and recurrent neural networks for 
replacing full-wave numerical models of microwave struc-
tures in complex microwave design tools. Building a neural 
model, attention is turned to the modeling accuracy and to 
the efficiency of building a model. Dealing with the accu-
racy, we describe a method of increasing it by successive 
completing a training set. 

Neural models are mutually compared in order to highlight 
their advantages and disadvantages. As a reference model 
for comparisons, approximations based on standard cubic 
splines are used. 

Neural models are used to replace both the time-domain 
numeric models and the frequency-domain ones. 

Keywords 
Artificial neural networks, frequency-domain finite 
elements, time-domain method of moments, wire an-
tennas, microwave transmission lines. 

1. Introduction 
Modern communication services require wider and 

wider frequency bands for their operation. Since lower fre-
quency bands are out of their capacity today, broadband 
services have to operate on higher microwave frequencies. 

Designing broadband microwave communication sys-
tems, efficient modeling tools are required. These mode-
ling tools have to be based on numeric solving Maxwell’s 
equations. If a harmonic steady state is assumed, then so 
called frequency-domain methods are used for analysis. If 
a general excitation containing a large number of harmonic 
components is assumed, then we analyze the structure by 
time-domain methods [1]–[3]. 

Exploiting frequency-domain numerical methods, a 
broadband microwave structure has to be analyzed on each 
harmonics from the examined frequency band separately. 
In the case of time-domain analysis, a short pulse contain-
ing spectral components from the whole examined frequen-
cy band excites the structure of interest. Within a single 

analysis, information about the structure behavior over the 
whole frequency band is obtained [1], [2]. 

Numerical analysis both in the time domain and in the 
frequency one is rather time-consuming, which complica-
tes their potential usage in complex design tools. Numeri-
cal models are therefore to be replaced by closed-form ap-
proximate formulae, or by neural models. 

Neural networks are electronic systems, which are 
built according to a human brain: they contain a large num-
ber of the same non-linear building blocks (neurons), they 
are highly parallel, they are organized in layers, and they 
are able to learn [4], [5]. The structure of a typical neural 
network is depicted in Fig. 1. 
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Fig. 1.  An example of an artificial neural network. The symbol 

wi,j(n) denotes a synaptic weight between the output of the ith 
neuron in the layer (n-1) and the input of jth neuron in the la-
yer n. The symbol bi

(n) denotes a threshold of the ith neuron in 
the nth layer. 

Neurons in the network (circles1 in Fig. 1) perform a few 
basic mathematical operations only: they multiply inco-
ming signals by variable coefficients (synaptic weights 
wi,j(n) and thresholds bi

(n) ), they sum the products and 
evaluate a non-linear function for the sum of products [4]. 
Hence, the neuron operation is computationally efficient. 

                                                           
1 In the diagram depicted in Fig. 1, the circles represent 

the neurons in general. In a real neural network, we can 
replace circles by adaptive non-linear neurons (Fig. 3), 
adaptive non-linear feedback neurons (Fig. 5) or other 
types of neurons [4]. 
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Since the neural network is able to learn, we can train 
it to behave a similar way as a numerical model. Therefore, 
a properly trained neural network can replace a computa-
tionally inefficient numerical model in the design tools. 

Let us explain the whole training procedure on an 
example when a neural model of a symmetric wire dipole 
of the length h and of the wire radius a is developed. The 
neural model is asked to produce input resistance R(h,a) 
and input reactance X(h,a) of the antenna on a fixed pre-
scribed frequency f. Then, the whole training consists of 
the following steps: 

• Creating training patterns. Using a numerical met-
hod, the dipole is analyzed for various lengths h1, h2, 
to hM and for various radii a1, a2, ..., aN. Input patterns 
are formed by the doublets [hm, an], where m = 1, 2, to 
N and n = 1, 2, …, N. Output targets consist of corres-
ponding input impedances [R(hm, an), X(hm, an)]. An 
input pattern and an output target give a training pat-
tern together. All the training patterns form the train-
ing set. 

• Building neural network. We create a neural net-
work consisting of an estimated number of layers and 
of an estimated number of neurons in the layers. The 
number of neurons in the input layer is given by the 
number of parameters in the input pattern (two in our 
example, due to the input doublets [hm, an]). The num-
ber of neurons in the output layer is determined by the 
number of parameters in the output target (again two 
in our example, due to the output doublets [R(hm, an), 
X(hm, an)]). The number of hidden layers and hidden 
neurons have to be estimates; the discussion is given 
in the section 2.1 for feed-forward neural models and 
in the section 2.2 for recurrent neural models. Synap-
tic weights are set randomly. 

• Training neural network. During the training, input 
patterns [hm, an] are successively introduced into the 
inputs of the neural network, and synaptic weights are 
changed to reach desired output responses [R(hm, an), 
X(hm, an)]. The training is finished when the network 
reacts properly to all the input patterns from the train-
ing set. 

• Verifying neural model. We introduce such patterns 
to the inputs of the neural model, which differ from 
the input patterns of the training set. Exploiting the 
numerical model, correctness of the response of the 
network is verified. If the response is incorrect, ad-
ditional training patterns have to be prepared, and 
training has to be repeated over a larger training set. 

• Using neural model. The trained neural network pro-
duces output responses with a sufficient accuracy 
both for training patterns and for interlaying input 
patterns. Therefore, the neural network can replace 
the numerical model. 

The trained neural network provides a special approxima-
tion in a fact: the exact results of the numerical analysis, 

which are hidden in the training patterns, are used for neu-
ral computing approximate results, which correspond to in-
put parameters differing from input patterns. That way, a 
computationally modest neural network can replace a nu-
merical analysis for parameters differing from training 
patterns. 

In Section II, neural networks are used to replace fre-
quency-domain finite-element model of a shielded micro-
strip transmission line in a layered medium in the frequen-
cy band from 10 GHz to 80 GHz. 

In Section III, neural networks are exploited to appro-
ximate time-domain moment-method model of a symmetric 
wire dipole in the frequency band from 0 to 2 GHz. 

In Section IV, we give more general conclusions and 
hints for building neural models of broadband structures. 

2. Frequency-Domain 
Broadband Modeling 
Frequency-domain modeling of broadband structures 

is going to be explained on a shielded microstrip transmis-
sion line in a layered medium (Fig. 2). The transmission 
line is assumed to be longitudinally homogeneous, the 
shielding waveguide and the microstrip are perfectly elec-
trically conductive, and all the parts are lossles. All the pa-
rameters of the structure are fixed except of dielectric con-
stants of layers. Dielectric constants can vary within the 
interval from εr1,2 = 2 to εr1,2 = 4. 
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Fig. 2.  A shielded microstrip transmission line in a layered me-

dium. Height and width of the shielding waveguide A = B = 
= 12.7 mm, width of the microstrip w = 1.27 mm, thickness of 
the microstrip t ≈ 0, and height of dielectric layers h = 0.635 
mm are assumed being fixed. Dielectric constants of a sub-
strate and a superstrate are variable. The whole structure is 
lossles. Metallic parts are perfect electric conductors. 

In order to get training patterns, the transmission line is 
analyzed by frequency-domain finite elements of the no-
dal-edge nature [6], [7]. The analysis results in values of 
the dominant-mode propagation constant on frequencies 
between 10 GHz and 80 GHz for various couples of di-
electric constants εr1 and εr2. The neural model is asked to 
provide propagation constants over the three-dimensional 
space εr1 ∈ <2, 4>, εr2 ∈ <2, 4>, f ∈ <10 GHz, 80 GHz>. 

First, dielectric constants εr1 and εr2 are changed with 
∆εr = 1, and frequency is changed with ∆f = 10 GHz. That 
way, three values of εr1, three values of εr2 and eight values 
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The number of hidden layers and neurons in hidden 
layers has to be estimated. As shown in [8], the neural 
network should consist of so many neurons so that the 
number of effectively used parameters (weights and biases) 
varies between 70 % and 90 % of the total number of the 
network parameters. The number of effectively used para-
meters can be estimated by the Bayesian regularization [9]. 

of f are obtained. The analysis is performed 3 × 3 × 8 = 72 
times to complete each input triplet [εr1, εr2, f] by a corres-
ponding propagation constant β. On the basis of training 
patterns, the neural network is asked to estimate the propa-
gation constant in the three-dimensional space [εr1, εr2, f]. 

2.1 Feed-Forward Neural Network 
In our development, we started with two hidden 

layers consisting of eight neurons. The Bayesian regulari-
zation estimated 50 % of network parameters being effec-
tively used. Consecutively, we decreased the number of 
neurons in hidden layers up to five in each, which corres-
ponds to 82 % of effectively used parameters. 

Feed-forward neural networks are characteristic by a 
direct signal flow from the input layer to the output one 
without any feedback. Therefore, this type of networks 
simply statically maps input patterns into output targets. 
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Quality of the neural model can be expressed by the 
cumulative error [8] 

( )
( ) ( )

( )∑
=

−
⋅

⋅=
8

1 21

2121

21

,,
,,,,

)1(100,

n nrrn

nrrnnrra

rr

f
ff

e

εεβ
εεβεεβ

εε
 

In (1), we compute the absolute value of the percentage 
error of the propagation constant computed by the neural 
model βn with respect to the propagation constant obtained 
by the finite-element analysis βa, and we sum the percen-
tage errors over all frequencies f1 = 10 GHz, f2 = 20 GHz to 
f8 = 80 GHz. Fig. 3.  a) Architecture of a feed-forward neural network for mo-

deling a shielded microstrip transmission line in layered me-
dium. Input layer consists of input neurons2 (squares). Other 
layers contain adaptive non-linear neurons (circles). b) Struc-
ture of an adaptive non-linear neuron. 

Cumulative error of the above-described neural model 
of the shielded transmission line is depicted in Fig. 4. Whe-
reas the cumulative error is negligible in the training points 
it reaches up to 3 % in the interlaying points. Since input patterns are triplets [εr1, εr2, f] in our case, the 

input layer has to consist of three neurons. Since the output 
target is a corresponding propagation constant β, there is a 
single neuron in the output layer. The structure of the ne-
ural model is depicted in Fig. 3. 
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Fig. 5.  a) Architecture of a recurrent neural network for modeling 
a shielded microstrip transmission line in a layered medium. 
The input layer consists of input neurons (squares). In a hid-
den layer, adaptive non-linear feedback neurons are used 
(hatched circles). The output layer consists of usual adaptive 
non-linear neurons (see Fig. 3b). b) Structure of an adaptive 
non-linear feedback neuron (D denotes a delay block). 

Fig. 4.  Cumulative error distribution for a neural model of a shiel-
ded microstrip transmission line in a layered medium. The ne-
ural model is based on the feed-forward neural network and on 
the equidistant training patterns. 

Now, we try to repeat the described neural model develop-
ment when using a recurrent neural network. 

                                                           2.2 Recurrent Neural Network 2 Input neurons can be understood as dividers, which 
simply distribute the input signal to all the neurons in 
the following layer. 

Due to the feedback in the structure (see Fig. 5), the 
recurrent neural network is able to map an input sequence 
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For the described approximation technique, the distri-
bution of the cumulative error is depicted in Fig. 7. Com-
paring the error of splines to the error of the feed-forward 
model (Fig. 4) and the recurrent model (Fig. 6), the cumu-
lative error can be concluded to be the same for the feed-
forward model and the splines whereas for the recurrent 
model, the cumulative error is half-sized. 

into an output sequence. In case of broadband modeling of 
the shielded microstrip transmission line, doublets of di-
electric constants can play the role of input patterns, and a 
sequence of propagation constants on frequencies 10 GHz, 
20 GHz, …, 80 GHz is a target sequence. 

Structure of the recurrent model of the transmission 
line is depicted in Fig. 5. The input layer consists of two 
neurons (the input for frequency was removed), the output 
layer is identical with the output of the feed-forward neural 
network. Dealing with hidden layers, recurrent networks 
contain a single hidden layer of feedback neurons. 

Nevertheless, accuracy of neural models can be incre-
ased by adding new training patterns into the initial equi-
distant training set (the training set becomes non-equidis-
tant). Such an approach is inapplicable in the case of 
splines. In case of our model, the optimum number of hidden 

neurons was estimated to 5. For higher number of neurons, 
behavior of the neural model did not change. For lower 
number of neurons, the neural model exhibited unaccep-
tably high error. 

2.4 Non-Equidistant Training Patterns 
Following [8], accuracy of a feed-forward neural mo-

del is increased by finer spatial sampling in areas, which 
are associated with the largest values of the cumulative 
error. In our case (Fig. 4), we can identify five above-des-
cribed areas, which surround points [εr1, εr2] = [2.5, 2.0], 
[2.5, 3.0], [2.5, 4.0], [3.5, 2.0], [3.5, 4.0]. Therefore, 40 
new analyses are performed (for each new point, phase 
constant on eight frequencies is evaluated), and the so-far 
existing training set is completed by newly constructed 
patterns. The structure of the neural model stays unchanged 
(two hidden layers consisting of five neurons). Cumulative 
error of such a model is depicted in Fig. 8. 

Cumulative error of the recurrent neural model is de-
picted in Fig. 6. The maximum of the error is half-size 
compared to the feed-forward model. 

3.5

0.0

0.5

1.0

1.5

r1ε

e [%]

2.0
2.5

3.0
3.5 ε r2

2.5
3.0

2.0  

0.0
0.5
1.0
1.5
2.0
2.5
3.0

r1ε

e [%]

2.0
2.5

3.0
3.5 ε r2

2.0
2.5

3.0
3.5

 

Fig. 6.  Cumulative error distribution for a neural model of a 
shielded microstrip transmission line in a layered medium. 
The neural model is based on the recurrent neural network 
and on the equidistant training patterns. 

Now, we compare results of the neural modeling and a 
standard approximation based on cubic splines. 

Fig. 7.  Cumulative error distribution for a spline model of a shiel-
ded microstrip transmission line in a layered medium. 2.3 Cubic Splines 

Comparing the cumulative error distribution of the equidis-
tant feed-forward model and the non-equidistant one, the 
maximum value of the cumulative error is concluded being 
reduced for approximately 50 %. The result is twice better 
compared to cubic splines, which cannot be improved by 
the non-equidistant sampling technique. 

If functional values in interlaying points should be 
evaluated using functional values in equidistantly distri-
buted independent points, splines are usually exploited 
[10]. In case of cubic splines, the unknown function is 
approximated by piecewise-cubic function. 

Applying cubic splines to computing propagation 
constants of shielded microstrip transmission line, we use 
two-dimensional approximation over the plane of dielectric 
constants εr1 and εr2. Such an approximation is applied to 
each frequency from [10 GHz, 20 GHz, …, 80 GHz] sepa-
rately: 8 approximations for triplets [εr1, εr2, 10 GHz], 
[εr1, εr2, 20 GHz], …,  [εr1, εr2, 80 GHz] are performed. 

In the next step, the same approach is applied to im-
proving accuracy of the recurrent model. 

Investigating Fig. 6, the maximum cumulative error is 
revealed in the vicinity of points [εr1, εr2] = [2.0, 2.5], 
[2.5, 3.5], [3.5, 2.5], [3.5, 3.0]. Therefore, 32 new analyses 
are performed (for each of four new points, phase constant 
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is evaluated on eight frequencies), and the so-far existing 
training set is completed by those new patterns. Structure 
of the neural network stays unchanged again (a single hid-
den layer consisting of five feedback neurons), and the ne-
ural model is re-trained. The resultant cumulative error is 
depicted in Fig. 9. 

• Elaborateness of model creation; 
• Approximation abilities of models. 

Model accuracy. Recurrent models are more accurate than 
feed-forward ones (accuracy is approximately twice bet-
ter). Whereas feed-forward models suffer from a possible 
increase of the cumulative error in interlaying points, re-
current models do not exhibit such a disadvantage. 
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CPU-time demands of creation process. Training 
recurrent models is approximately 15-times more CPU-
time demanding compared to feed-forward ones. This dis-
advantage is compensated by higher accuracy and by the 
immunity to the increase of the cumulative error in inter-
laying points. 

Elaborateness of model creation. Both the feed-
forward neural model and the recurrent one were trained 
using very similar training sets (in the case of the recurrent 
model, one training pattern is saved), and therefore, both 
time and energy needed for their preparation are compa-
rable. Whereas in the case of feed-forward models the care 
has to be taken for the approximation error increase in in-
terlaying points, recurrent models are more robust from 
that point of view. 

Fig. 8.  Cumulative error distribution for a neural model of a 
shielded microstrip transmission line in a layered medium. 
The neural model is based on the feed-forward neural net-
work and on the non-equidistant training patterns. 

Maximum value of cumulative error reaches 0.5 %, which 
is twice better compared to a non-equidistant feed-forward 
model and 4-times better compared to the spline model. 

Approximation abilities of models. Approximation 
abilities of recurrent models are better compared to the abi-
lities of feed-forward models: recurrent models do not suf-
fer from approximation error increase in interlaying points. In the next step, CPU-time demands of creating mo-

dels were compared. Comparisons were performed on a PC 
equipped with the processor AMD Athlon 2 GHz, with the 
1 024 MB RAM and the operating system Windows 2000. 
For computations, MATLAB 6.1 and the Neural Network 
Toolbox 4.0 were used. Creating feed-forward model con-
sumed 4.47 seconds of CPU-time3. When creating recur-
rent model, 63.61 seconds of CPU-time were consumed, 
which is approximately 15-time longer time. On the other 
hand, the longer creation time of recurrent models is com-
pensated by more stable training process compared to the 
feed-forward networks: training feed-forward networks is 
more sensitive to setting a proper number of hidden ne-
urons. The spline model does not require any training, and 
therefore, creation CPU-time demands are zero. 

The above-given conclusions cannot be formulated by 
generalizing experience with models of a single structure. 
They were verified by modeling a plenty of antennas, 
transmission lines and passive microwave circuits. In this 
paper, the experience was summarized and illustrated by a 
single example. 
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2.5 Conclusions 
The above-described models of the shielded micro-

strip transmission line in a layered medium can be evalu-
ated from the following points of view: 

• Model accuracy; 
• CPU-time demands of creation process; Fig. 9.  Cumulative error distribution for a neural model of a 

shielded microstrip transmission line in a layered medium. 
The neural model is based on the recurrent neural network 
and on the non-equidistant training patterns.                                                            

3 The given CPU-time of creating neural models covers 
training only. If the training is not successful (revealed 
in the verification phase), new training patters have to 
be built and the training has to be repeated, which sig-
nificantly increases CPU-time demands. 

In the next section, the described principles of neural mo-
deling of broadband structures are going to be applied to 
developing time-domain neural models of microwave 
structures. 
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3. Time-Domain Modeling 
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Creating a neural model of a microwave structure in 
the time domain, the neural network is asked to map an 
input pattern into a time sample of the output quantity (in 
case of feed-forward models) or into a series of time samp-
les (in case of recurrent models). 

The only difference between the frequency-domain 
broadband modeling and time-domain modeling consists 
“in the horizontal axis labeling”. Whereas the horizontal 
axis of the frequency-domain model expresses frequency, 
the horizontal axis of the time-domain model denotes time. 

Principles of building time-domain neural models are 
going to be explained for a symmetric wire dipole (Fig. 
10). The radius of the antenna wire is assumed being much 
smaller compared to the wavelength and the length of the 
dipole arm. Then, a thin-wire approximation can be used 
(currents and charges are concentrated of the wire axis 
[11]). Therefore, the numerical analysis is a one-dimen-
sional problem. During the analysis, the length of the di-
pole is changed in the interval h ∈ <1 m; 3 m>, and the 
wire radius can vary in the interval a ∈ <10 mm; 90 mm>. 

Fig. 11.  Time course of the transient current in the excitation gap 
of the dipole. 

Accuracy of time-domain neural models is quantified by 
the cumulative error again. Whereas a relative error was 
cumulated in the case of frequency-domain modeling, an 
absolute error has to be cumulated in the time domain be-
cause the output quantity can be positive, negative and 
zero. The absolute value of the absolute error is cumulated 
over all 100 time samples 
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Here, Iexc
app(a, h, n) denotes the value of nth time sample of 

the current in the excitation gap of the dipole, which length 
is h and which radius equals to a; the current is computed 
by a neural model. Next, Iexc

num(a, h, n) denotes the current 
computed by the numerical analysis. 

Fig. 10.  Symmetric wire dipole from perfect electric conductor. 
The antenna is excited by plane wave of normal incidence. 
Electric field vector is of the same direction as antenna axis. 
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The antenna is analyzed by time-domain method of mo-
ments [1]. The dipole is assumed to be fabricated from the 
perfect electric conductor and to be placed in vacuum. The 
antenna is excited by a plane wave, which propagates per-
pendicularly to the antenna axis. The vector of electric field 
intensity of the excitation wave has the same orientation as 
the antenna wire. Time course of the excitation wave is of 
the character of the Gaussian pulse. The width of the pulse 
is 2 LM4. The analysis results to the time course of the cur-
rent in the excitation gap of the dipole. Fig. 12.  Architecture of a feed-forward neural network for time-

domain modeling symmetric wire dipole. Squares symbolize 
input neurons (a simple distribution of input signals), circles 
symbolize adaptive non-linear neurons (see Fig. 3). 

In the first attempt, input quantities are changed with 
the steps ∆h = 1 m and ∆a = 40 mm. The initial training set 
therefore consists of nine input patterns, which correspond 
to all the possible combinations of lengths h = [1,0 m; 2,0 
millimeters; 3,0 m] and radii a = [10 mm; 50 mm; 90 mm]. 
The output targets Imn consist of 100 time samples of a cur-
rent in the excitation gap of the dipole [hm, an], where m, n 
are 1, 2, 3. The transient current is sampled in the interval  
t = 40 LM with the sampling step ∆t = 0.4 LM. An exam-
ple of the output target is depicted in Fig. 11. 

In following sections, a way of approximating transient 
currents by neural networks and splines are described. 

3.1 Feed-Forward Neural Network 
The feed-forward neural network maps input triplets, 

which consist of the dipole length h, antenna wire radius a 
and the index of the current sample n, to the respective va-
lues of the current in the excitation gap I( a, h, n). 

                                                           Therefore, the feed-forward neural model consists of 
three input neurons and a single output neuron. Exploiting 
Bayessian regularization, the optimal number of hidden 
layers is set to three, and the optimal number of neurons in 
hidden layers is set to [24, 17, 24]. A relatively small num-

4 The abbreviation LM denotes light meter. Light meter 
equals to the time, which is consumed by electromag-
netic wave in free space to travel the distance of one 
meter: light meter equals to (3⋅108)-1 s. 
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ber of neurons in the middle hidden layer implements the 
so-called bottleneck, which can prevent the neural network 
to over-training [4]. Over-training causes the increase of 
the approximation error in the interlaying points. 

• There are no deep minims in the error distribution in 
the points representing input patterns (Figs. 13, 15). 

I , I , ..., I1 2 N

h

a

 

Cumulative error distribution5 of the feed-forward model 
of the wire dipole is depicted in Fig. 13. The error is of a 
negligible value for nine training points. In interlaying 
points, the error reaches 0.15 A. This maximum error was 
detected for input points [h, a] = [1.6 m; 30 mm], [1.6 m; 
70 mm], [2.6 m; 30 mm] and [2.6 m; 70 mm]. 

Fig. 14.  Architecture of a recurrent neural network for time-do-
main modeling symmetric wire dipole. Squares symbolize in-
put neurons (a simple distribution of input signals), empty 
circles symbolize adaptive non-linear neurons (see Fig. 3), 
hatched circles are recurrent neurons (see Fig. 5). 

Now, a similar model is going to be developed when 
a recurrent neural network is used. 

3.2 Recurrent Neural Network The price, which has to be paid for better properties of the 
recurrent model, is a longer training time. Whereas the 
feed-forward network was trained within 300 iterations for 
the training error6 10-5, the recurrent network required 3000 
iterations for the error 10-4. Due to the feedbacks in the 
recurrent model, the training is more complicated. 

Structure of the recurrent neural model of the wire 
dipole is depicted in Fig. 14. In the input layer, an input 
neuron introducing information about the index of the time 
sample of the excitation current n is missing: due to the dy-
namic behavior of the network, the recurrent model produ-
ces the whole sequence of 100 time samples of the current 
as a response to the input pattern [a, h]. 

The maximum error was detected for points [h, a] = [1.6 
millimeters; 30 mm], [1.6 m; 70 mm], [2.6 m; 30 millime-
ters] a [2.6 m; 70 mm], which are identical with maxims of 
the feed-forward model. 
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Fig. 13.  Cumulative error distribution for a time-domain neural 

model of a wire dipole. The neural model is based on the 
feed-forward neural network and on the equidistant training 
patterns. Fig. 15.  Cumulative error distribution for a time-domain neural 

model of a wire dipole. The neural model is based on the re-
current neural network and on the equidistant training pat-
terns. 

Hence, the recurrent network consists of two input neu-
rons. The optimum behavior of the model was reached 
when the hidden layer obtained 107 recurrent neurons. In the next section, we describe a spline model, which is 

analogical to the above-described neural models. For the 
development, cubic splines are used. 

Cumulative error distribution of the time-domain re-
current model is depicted in Fig. 15. Comparing to the 
feed-forward model, two main differences are observed: 

• Cumulative error is approximately twice smaller com-
pared to the feed-forward model (see Figs. 13, 15);                                                            

6 The training process can be understood as an optimiza-
tion problem in fact: the state variables (biases and we-
ights are set so that the squared difference between the 
actual output of the neural network and the required 
output training patterns is minimized. The difference 
between the actual output and the desired one is expres-
sed by the training error. 

                                                           
5  In the time domain, the cumulative error has to be ex-

pressed as the absolute error due to the zero value of 
the current in several time instants: dividing the abso-
lute error by the numerically computed current tends to 
infinity if the numerically computed current approaches 
zero. 
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3.3 Cubic Splines 
For time-domain wire-dipole modeling, two-dimen-

sional cubic splines are used (approximations over the 
plane ah). Since the model consists of 100 ah planes (for 
each time sample of the current in the excitation gap), the 
spline model can be understood as 100 parallel approxima-
tions for triplets [a, h, 1], [a, h, 2], …, [a, h, 100]. 

For cubic splines, cumulative error distribution is 
computed the same way as for neural models. The result is 
depicted in Fig. 16. 

Fig. 16 shows the absolute value of the cumulative 
error being of the same level as the feed-forward neural 
model exhibited (error of the recurrent model is approxi-
mately twice lower). Whereas the accuracy of neural mo-
dels can be improved by finer sampling in the areas of the 
maximum error, accuracy of a spline model cannot be 
improved that way. 
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Fig. 16.  Cumulative error distribution for a time-domain spline 

model of a wire dipole. 

In the next section, the training set is completed by the 
additional training patterns corresponding to the doublets 
[h, a] = [1.6 m; 30 mm], [1.6 m; 70 mm], [2.6 m; 30 mm] 
and [2.6 m; 70 mm]. For those doublets of wire-antenna 
parameters, both the feed-forward model and the recurrent 
one exhibited the maximum cumulative error. 

3.4 Non-Equidistant Training Patterns 
In the case of the feed-forward neural model, a larger 

training set has to be respected by changing the number of 
hidden layers and their neurons: instead of three layers 
consisting of [24, 17, 24] neurons, only two hidden layers 
of [51, 51] neurons were used: the neural network of the 
original architecture was not able to absorb new informa-
tion hidden in new training patterns. 

Cumulative error distribution of the non-equidistant 
neural model is depicted in Fig. 17. In the distribution, four 
deep minims, which correspond to new training patterns, 
can be observed. The cumulative error in the interlaying 
points was twice reduced comparing to the equidistant 
model (Figs. 13, 17). The reached accuracy of the feed-
forward non-equidistant model is approximately twice 
better compared to splines (Fig. 16), and approximately the 

same compared to the recurrent equidistant model 
(Fig. 15). 
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Fig. 17.  Cumulative error distribution for a time-domain neural 

model of a wire dipole. The neural model is based on the 
feed-forward neural network and on non-equidistant patterns. 

1.0
1.5

2.0
2.5

0
20

40
60

80

0.00

0.01

0.02

0.03

a [mm]
l [m]

[A]
e

 
Fig. 18.  Cumulative error distribution for a time-domain neural 

model of a wire dipole. The neural model is based on the re-
current neural network and on the non-equidistant patterns. 

Dealing with the recurrent non-equidistant model, the ar-
chitecture has to be modified: instead of 107 recurrent 
neurons, 142 recurrent neurons have to be used. 

Cumulative error of the recurrent non-equidistant mo-
del is depicted in Fig. 18. Accuracy of this model is appro-
ximately twice better compared to the recurrent equidistant 
model (Fig. 15) and twice better compared to the feed-for-
ward non-equidistant model (Fig. 17). 

We can therefore conclude that statements presented 
in the paragraph 2.5 stay valid. 

4. Conclusions 
In the paper, exploitation of artificial neural networks 

to the automatic creation of models of broadband electro-
magnetic structures, both in the time domain and in the 
frequency domain, was described. We demonstrated there 
is no principal difference between models in both the do-
mains. 
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Both the feed-forward neural networks and the recur-
rent ones were used for building models. Neural models 
were compared with cubic-spline approximations as the 
reference solution. The possibility of improving accuracy 
of neural models by generating additional training patterns 
was highlighted as the main advantage of the neural ap-
proach. 

Recurrent neural models were shown to be more ro-
bust than feed-forward ones. Whereas feed-forward models 
are sensitive to the number of hidden neurons, and stand-
alone realizations can exhibit dramatic differences in the 
reached approximation error, sensitivity of recurrent mo-
dels to the number of hidden neurons is smaller, and stand-
alone realizations are of very similar behavior. The price, 
which has to be paid for better properties of recurrent net-
works, are higher CPU-time demands of training. 

The resultant feed-forward models differ from the re-
current ones. Whereas feed-forward models tend to over-
training (high approximation error in interlaying points), 
recurrent models are more immune to this phenomenon. 

The possibility of automating model development is 
the main advantage of neural networks. During the model 
development, approximation abilities of models are tested 
in interlaying points, and in the case of higher approxima-
tion error, the respective areas are sampled more finely. 

Utilization of the finished neural model is very quick: 
output responses are formed using a relatively low number 
of additions, multiplications and evaluations of a non-li-
near function (in real arithmetic). If neural models are ac-
curate enough, they can be used in complex design tools as 
an accurate and efficient model of various microwave com-
ponents. 

Acknowledgements 
Research described in the paper was financially sup-

ported by the Czech Grant Agency under grants no. 102/ 
01/0571 and 102/01/0573. Further financial support was 
obtained from the Czech Ministry of Education under pro-
grams MSM 262200011 and MSM 262200022. 

References 
[1] RAO, S. Time domain electromagnetics. San Diego: Academic 

Press, 1999. 

[2] RAIDA, Z. et al. Analýza mikrovlnných struktur v časové oblasti 
(Time-domain analysis of microwave structures). Brno: VUTIUM 
Publishing, 2003. 

[3] ČERNOHORSKÝ, D., RAIDA, Z., ŠKVOR, Z., NOVÁČEK, Z. 
Analýza a optimalizace mikrovlnných struktur (Analysis and opti-
mization of microwave structures). Brno: VUTIUM Publishing, 
1999. 

[4] HAYKIN, S. Neural networks: A comprehensive foundation. Engle-
wood Cliffs: Macmillan Publishing Company, 1994. 

[5] CICHOCKI, A., UNBEHAUEN, R. Neural networks for optimiza-
tion and signal processing. Chichester: J. Wiley & Sons, 1994. 

[6] LEE, J. F., SUN, D. K., CENDES, Z. J. Full-wave analysis of dielec-
tric waveguides using tangential vector finite-elements. IEEE Trans-
actions on Microwave Theory and Techniques. 1991, vol. 39, no. 8, 
p. 669 – 678. 

[7] LEE, J. F. Finite element analysis of lossy dielectric waveguides. 
IEEE Transactions on Microwave Theory and Techniques. 1994, vol. 
42, no. 6, p. 1025 – 1031. 

[8] RAIDA, Z. Modeling EM structures in Neural network toolbox of 
Matlab. IEEE Antennas and Propagation Magazine. 2002, vol. 44, 
no. 6, p. 46 – 67. 

[9] DEMUTH, H., BEALE, M. Neural network toolbox for use with 
Matlab: User's guide. Version 4. Natick: The MathWorks Inc., 2000. 

[10] DE BOOR, C. A Practical guide to splines. Berlin: Springer-Verlag, 
1978. 

[11] HARRINGTON, R. F. Field computation by moment methods. 2nd 
edition. Piscataway: IEEE Press, 1993. 

[12] RAIDA, Z. Broadband design of planar transmission lines: feed-for-
ward neural approach versus recurrent one. In Proceedings of the In-
ternational Conference on Electromagnetics in Advanced Applica-
tions ICEAA 2003. Torino (Italy), 2003, p. 155 – 158. 

[13] LUKEŠ, Z., RAIDA, Z. Design of microwave antennas: neural net-
work approach to time domain modeling of V-Dipole. In Proceed-
ings of the International Conference on Electromagnetics in Ad-
vanced Applications ICEAA 03. Torino (Italy), 2003, p. 7 – 10. 

[14] RAIDA, Z. Wideband neural modeling of wire antennas: feed-for-
ward neural networks versus recurrent ones. In Proceedings of the 
Progress in Electromagnetics Research Symposium PIERS 2003. 
Honolulu (Hawaii), 2003, p. 717 – 717. 

About Authors... 
Zbyněk RAIDA is with the Faculty of Electrical Engine-
ering and Communication (FEEC), Brno University of 
Technology (BUT). He is interested in exploitation of nu-
merical methods to the analysis of microwave systems, and 
to the application of genetic algorithms and artificial neural 
networks to the design of microwave structures. 

Zbyněk Lukeš was born in 1979 in Frýdek-Místek (Czech 
Republic). He received the Ing. (M.Sc.) degree in electrical 
engineering from the Faculty of Electrical Engineering and 
Communication, Brno University of Technology (FEEC 
BUT) in 2002. At the present time, he is Ph.D. student at 
the Department of Radio Electronics, FEEC BUT. His re-
search is oriented to time-domain analysis of antennas. 

Viktor Otevřel was born in 1975. He received the M.Sc. 
degree in electronics and telecommunication from the Fa-
culty of Electrical Engineering and Communication, Brno 
University of Technology in 2000. Now, he is a Ph.D stu-
dent at the Department of Radio Electronics. His major re-
search interests are aimed at the questions concerning the 
problems of artificial intelligence (in particular, evolu-
tionary computation) and its usage in technical practice. 
Numerical modeling of electromagnetic structures in time 
domain using FDTD method is of minor interest to him. 


