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Abstract. Standard tools for CAD have limited modes of Let us assume now that the firsisteps of a numerical
the sensitivity analysis: PSPICE only contains a static modéntegration of (1) have finished. Let us markt,,) by =,
and SPECTRE includes frequency-domain and static modeand define backward scaled differences by the formulae
However, many RF systems use symmetrical structures for

enhancing the circuit properties. For such systems, the static §Vg,, = «,,,

sensitivities are zero on principle and hence the time-domain Mg — sV _ (k=1 slh-1),

sensitivity analysis should be used. In the paper, a novel re- " " n n=b
current formula for the time-domain sensitivity analysis is k=1,...;k,+2 (2)
derived which uses by-products of an efficient implicit in- ) _ )
tegration algorithm. As the selected integration algorithm (& cOncept of the backward scaled differences with a detailed
is more flexible than the Gear's one that is ordinarily used,StaPility investigation can be found in [1], €.9.), whésgis
the sensitivity analysis is more efficient in comparison wittne ©rder of the polynomial interpolation used in the last in-
the standard CAD tools. An implementation of the methodegration step, and thel; ) multipliers are also determined

is demonstrated using the analysis of a low-voltage fourtsing the recurrent scheme:

quadrant RF multiplier. Nonstandard temperature sensitivity o) 1

analyses are also tested in the static and dynamic modes. n ’

tn — tne
al) =l k1 kL ()
tho1 —th_1-k

Keywords The predictor of the variables for the next chosen time

(i.e., fort,, 1) marked bya:;ofrl is determined by the poly-

Implicit integration algorithm, sensitivity analysis, RF nomial extrapolation using the backward scaled differences
CMOS circuits, analog multiplier, four-quadrant mixer. ):

kn41
5“5?-&1 = Z 0‘5521 Ma, (4)
k=0
1. Introduction ((4) is a more sophisticated form of the Newton interpolation

polynomial—see the proof of Theorem 1 in the Appendix).

o et etons canonly b el ar Pl The conctor of the varialess, .~ o) o
. ST ! 1g tn+1 is determined by the modified Newton iterations
rithm for the implicit integration of a system of algebraic-

differential equations must be used. Hence, main features of

) ()

such algorithm are described at first. Thereafter, a novel for- g ! g ! Az — W)

. . . : o ) T n+1| a3 Tht1 n41
mula is derived for the time-domain sensitivity analysis that or /), . oz ), .,
cooperates with this integration algorithm in a natural way. =0, jmax (5)

i.e., by repeated solving the linear system (5) with applying
2. Definition of the Algorithms the~, 11 factor approximated by (see Theorem 2 in the Ap-
) pendix)
Kn+t1

The system of nonlinear algebraic-differential equa- Yng1l = Z ;’ (6)

tions of a circuit is generally defined in the implicit form i tntl — tngi—k

which gives the standard formulg ;1 = 1/(tp11 — tn) =
Flzt),&(t),t] =o0. (1)  1/At,, if the first-order (i.e., Euler's) method is used.
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After resolving the linear system (5), the vectmﬁgﬁl which checks the residual value ﬁf)j) after each iteration.

andz') are updated in the standard way: The basic idea of handling the diﬁ‘erenoﬁ&(()j) in accord

n+1
L _ _ with (11) relates to the fundamental property of the Newton-
20D _ w§£1 + Az

n+1 n+1 ) Raphson method. If the average value of the residues does
. (G+1) _ () Az not decrease then the difference is halved and the iteration
Ty = Tpiq T Vnb1 AT,

is repeated. The halving continues until the average resid-
which completes thg + 1 iteration of then + 1 time step. 3| value has decreased. It is sure that the occurrence of the
However, if an indication of divergence is detected duringyecreased average residue will be found and therefore the al-
the iterations, then the logarithmic damping [2] is applied togorithm does not even contain a check for a possible infinite

each componet\z'?) | of the vectorAz!/) loop (1). As a result, only sucthz’’ is used for updating
A 4) the vectora:éj) that ensures the decrease of the average value
i D)o e (A A i Lnt+1 i
Axsﬁrl 1= sgn Algll) | £5£1| ln<1 + M) of the residues.
. n+l Note that the pararpete%lull prevent possible division
i=1,...,m (8  byzeroands, AZ, andf are auxiliary vectors.
before the execution of (7)1 is the dimension ok andx). Using the Newton-Raphson method (10) with the con-

Operating-point analysis is performed using the statidrolling procedure (11) leads to a very reliable convergence.
variant of (1) However, the number of iterations could be very large in that

case and therefore the logarithmic damping (8) should not be
J (20,0,t0) = f (z0) =0, (9)  applied if its use is not necessary for another reason.

which is solved by the static variants of (5) and (7):
) 2.1 A Novel Recurrent Formula for the Time-
(gfo) Az = _§D 20D _ g 4 Azl Domain Sensitivity Analysis
o
5=0, . jmaxg- (10) With respect to the notation used above, a system of the

. . ] _ parametric algebraic-differential equations of a circuit can be
However, the convergence in the operating-point analysis isympolically written in the form

often more problematic than that in the transient analysis. (In

the transient analysis, the results of the previous step serve as i [m(t,p), &(t,p),t, p] =0, (12)

a good estimation for the following step.) To avoid possible . o ]
divergence, a novel control mechanism has been developdf€rep is one of the circuit parameters on which the sen-

31 for handling the diff az? duri h iteration: sitivities are requested. Differentiating (12) with respect to
[3]for handling the differences.azy” during each teration p and using the abbreviations'(¢,p) = 0x(t,p)/0p and

if j = 0 then &/ (t,p) = 0x(t,p)/Op, we obtain
=~ . (0)
=5, 8f , 6f ., af
—x'(t —a'(t — =0. 13
A& = Azl ox V)T g TP Gy (43
f=r", After a derivation with using the backward scaled differences

(2, 3) and corrector (5, 6) (see the proof of Theorem 3 in the

iteration is accepted, . :
Appendix), we obtain the novel recurrent formula

else
1™ ip(d)
if — ) M < 1then (af> + Yrt1 <af) X =
m i=1 ‘7f| + 7/flrlull Ox n+1 ox n—+1
&=y, (11) - (w) + <8f) x
A% = Az, W Inn 9w
- . kniy1 kn+t1
Fi=1i Sl Vatng Y L | e
iteration is accepted, P = tnt1 — tati—k
else
A which has the same Jacobian as that in (5) (for egeh
AZ = —, therefore, the laborious LU factorization of that matrix must
) ~2 be executed onlgnce(of course) for each, .1, n =0, ....
Ty =,

) The part of (14) which is enclosed by the box enables
Az’ = AZ, more accurate and efficient computing the sensitivities in
iteration is rejected, comparison with other interpolation formulae defined in [4].
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Fig. 1. Low-voltage low-power CMOS RF four-quadrant multiplier with symmetrical low-frequency (input signal) and high-frequency
(local oscillator) sources.

2.2 Operating-Point Sensitivity Analysis version of the circuit has been realized at our department,

and we plan to perform the IM3 measurement. The output
) voltage of the multiplier is highly dependent on the control-

For determining initial parametric derivatiueg (At, p ling one applied to the gates of6 andm? transistors

by the recurrent formula (14) (note that the implicit integra-
tion algorithm must always start with the first-order method), A comparison of the output signals corresponding to
the static parametric derivative’(0,p) = z4(p) mustbe the two controlling voltages is shown in Fig. 2. For the con-
computed in advance. This vector can be obtained by differtrolling voltagesl and1.5 V, the magnitudes of the output
entiating a parametric version of (9) signal are abow20 and50 mV, respectively.

£, [wo(p)’p] -0, (15) The output voltage of the multiplier is also very depen-
dent on the zero-bias threshold voltadgés ([6], [7]) of the
which gives the simpler system of linear equations than (14lransistors. The sensitivities of the output voltage on these

of of important model parameters, i.e., the functions
T [20(P):P] TH(p) = *Tg[wo(p),p]- (16)

a‘/Output ¢ a‘/Output (t) nd 8‘/Output

) ) t
OVro MN1 OVro MN2 OVromp ®)

3. Checking the Implementation are shown in Fig. 3. As we can observe, the sensitivity on
the threshold voltagé’ro vp is the most significant. Let

us emphasize that the utilized software tool [2] uses another
T definition for the zero-bias threshold voltage than PSPICE—
3.1 Four-Quadrant CMOS RF Multiplier the original values for the standard PSPICE type model were
0.62 and—0.58 V [5] (in the modified model [2], the thresh-
Let us consider a four-quadrant CMOS RF multiplier old voltage is positive for both N and P channel enhancement
in Fig. 1 [5], which has been checked using the sensitivitynode transistors—this is the same convention as that in the
analysis described in Section 2. Note that a medium-waveSPICE JFET modeling [8]).
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Fig. 2. Dependence of the output voltage of the multiplier on Fig. 3.  Sensitivities of the output voltage of the multiplier on
the controlling voltage. the zero-bias threshold voltages of the transistors.
The results in Fig. 3 can simply be checked. The zero3.2 Operating-Point and Time-Domain
bias threshold voltages of thddNx andMP transistors were Temperature Sensitivity Analyses
0.47 and0.44 V, respectively. We can execute another ana-
lysis with somewhat changeldr, vip parameter and esti- Consider a power operational amplifier in Fig. 4 for

mate the sensitivity numerically. For example, let us use ahich both operating-point and time-domain temperature
modified valueVz, \;p = 0.4 V. At 17 ns (where the sen- sensitivity analyses will be tested. The amplifier has input
sitivity of Voutpus ON Vo mp has the maximund.0379411  transistors symmetrically connected as the standard differ-
as seen in Fig. 3), the values of the output volt&@g:,.:  ential pair. Therefore, a sensitivity of the output voltage on
and V) ;... (computed using the valuégoyp = 0.44V  local warming upAT; of Q1 is to be complementary to a
andVrz, yp = 0.4 V) were0.0139211 V and0.0118593 V,  sensitivity of the output voltage on local warming %
respectively. Now let us compare these results: the presf Q2. The values of these nonstandard sensitivities will be
dicted value obtained using the sensitivity g/, ., =  monitored as an appropriate and unconventional test of the
0.0139211 — 0.04 x 0.0379411 = 0.0124035 V, the ac-  algorithm.
tual output obtained using the val iS Viutput = _ _ L )
0.0118593 V, so the error of the preﬁ}’ilgﬁ is abolig) 9%,  3-2-1Operating-Point Sensitivity Analysis
At 20 ns, the values oFouiputs Voutput/Vromp, and The operating-point sensitivities (i.e., the initial static
Vutpur WEre0.00152467 V, 0.00303789, and0.00138769  ones) obtained by solving the static modification of (14) (i.e.,
V, respectively. Comparing again, the predicted value obby (16)) are precisely zero-symmetrical as expected
tained using the sensitivity i, = 0.00152467 — oV

Output

0.04 x 0.00303789 = 0.00140315 V, the actual voltage —2UPE — 110.0019251 V/K,
obtained using the modified valuér, \p is Vo ,ipu = O(ATh) (17)
0.00138769 V, so the error of the prediction is about 1 % OVoutput
’ ———~ =—0.0019297 V /K.
now—of course, the error is lesser for the smaller magnitude 0(ATy) /

of the output signal. ) )
In other words, if the two transistors have the same warm-

If we only want to compute the sensitivities on the jng up (which is natural) by 10 K, e.g., the output voltage
zero-bias threshold voltages, the above experiments usighanges approximately by46 pV—the precise symmetry
the modified value$’;,, are possible. However, the semiem- js very important because the output voltage is only about
pirical, BSIM [9], and EKV MOSFET models have many 1.3 mV when the amplifier works at its operating point.
parameters and therefore it is impossible to check the cir-
cuit using small differences of the model parameters if we3-2-2 Time-Domain Sensitivity Analysis
want to checkall the sensitivities. For complex testing a The results of solving the recurrent system (14) for
circuit with respect to all its parameters, the sensitivity anathe first period of transient with the starting vector (17) are
lysis seems to be the only effective way. Emphasize that thehown in Fig. 5. The best symmetry occurred (as also ex-
symmetrical circuit in Fig. 1 hagerostatic sensitivities (on pected) when the input and output voltages are close to zero
principle). Hence, the PSPICE sensitivity analysis does notalues. For other voltages, however, the symmetry is not ac-
offer any usable results here. curate but sufficient which the analysis clearly validates.
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Fig. 4. Power operational amplifier used for testing the operating-point and time-domain temperature sensitivity analyses, respectively.

4. Conclusion 102/05/0277, and by the Czech Technical University Re-
search Project MSM 6840770014 (the sensitivity analysis).
A novel recurrent procedure for the time-domain sen- Many thanks to Prof. Salama for sending all the MOS-

sitivity analysis has been proposed that efficiently uses theET model parameters.
computational by-products of implicit integration algorithm.

As the selected integration algorithm uses the backwar 20 —.004
scaled differences based on flexible Newton interpolatiot 1 i
polynomial, the sensitivity analysis is more efficient than 15 V(Output) d(V(Output))/d(delta(T(1)) |-.003
similar ones based on other interpolation schemes. Th ] /\ -
implementation has successfully been checked analyzir 197 RS
the sophisticated low-voltage low-power CMOS RF multi- 1 i =
plier. The correctness of programming the formulae has bee= 5? ?'001 =
checked by means of the classical finite difference analysiz 0] Fo z
assuming that the novel way gives more accurate results (5 C 5
principle. The implementation has also been checked fror> _5j :—..001 =
the physical point of view using the nonstandard temperatur 1 4(V(Output) d(delta(T (2)) 5 ;‘3
sensitivity analysis in both static and dynamic domains. 10 00 §
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Appendix

Theorem 1 The formula(4) can be regarded as a trans-

formed Newton interpolation polynomial.

Proof: A member of the interpolation polynomial

Tp+1 = Ty, + (thrl - tn) wn,nfl"_
(tn—i-l - tn) (tn+1 - tn—l) mn,n—l,n—Q +--- 4+
(thrl - tn) e (tn+1 - tn+1fkn+1) Ln,..., n—Kn41
(18a)
with the backward scaled differences defined as
T o Ly — Lp—1
n,n—1 tn — tn—l 9
. _ mn,...,n—i—l—k’n+1 - wWL—l,...,n—knJrl

N,eo,n—kpa1
ERERE] n+ tn _ tnfk;n+1

(18b)
can sequentially be transformed in the following way:

(tn+1 - tn) T (thrl - thrlflc) Ln,...n—k =
(tn+1 - tn) co (tn+1 - tn+1—k)
(mn,...,n-‘rl—k -
tp —tn—k

t —t.) - (t -
Tn—1, . .n—k) = (tny1 —tn) - (tng1 — tng1-k) y
(tn - tnfk) (tn — tn+17k)

[mn,...,n+2—k - mn—l,...,n—l—l—k - (tn - tn+1—k> X

T k] _ (thrl - tn) e (thrl - tn+17k)
nebens (tn - tn—k‘) co (tn - tn—l)
X [wn —Tp-1— (tn - tnfl) LTpn—-1,n-2 —

(tn - tnfl) (tn - tn72) Tpn—1,n—2mn—3 — """ —
(tn - tnfl) e (tn

(k) tn —tn—1
ntl|®Tn = Ln—1 — 7

- thrlfk) Ln—1,...n—k ] =

a (-1 — Tp—2) —

tnfl - tn72

al?

(tn - tnfl) (tn - tn72)

X
(tn—l - tn—S) (tn—l - tn—2)
a(l)l
Mg,y /—2__ Mz,
T N—— (tn,1 — tn,Q) - N
Tn—1 Tn—2 (tn—Q — tn—3) (wn72 (Bn,3)
6(2)1;7,’_1

. } - aﬁl(-’vn g — WM,

aglk—l)é(k—l)mn_l) =a® W, (19)

Therefore, the Newton interpolation polynomial (18) can be

reordered to a more convenient form (4). |

Theorem 2 The formula(6) can be regarded as a conse-

guence of “borderline” using the formuléd).

Proof: The vectoracff}r2 is to be expressed as a polyno-
mial created by (4) and (3):

- (7)  _
wnJrl -
(4)
Lpto — Tntl

tny2—tnt1 tpyo — bpg1

1 .
t71+2£I%ﬂ,+1 (t’ﬂ+1 —tn ntl
1 tnyo — tn )
sl oy
tn+1 - tn tn+1 - tnfl n+l
1 ... bnt2 ~ bng2—knya 5(kn+1)m(j) 1) —
tn+1 —tn tn+l - thrlfk:,,Hrl s
knt1 1 ]
s 5(k)m(3) . (20
=1 tn+1 - thrlfk ntl ( )

and the last formula in (20) gives thg,; factor in (5)
directly—this process is often called “algebraization”.l

Theorem 3 The derivatives of the sensitivitias, . ; with
respect tat,, 1 can be expressed by the formula

o/ 7
LTn4+1 = Yn+1Ln+1—

kn+1 kn+1 1

- _
S al st Ve, N o~ (21)
=1 el thrl - tn+17k

Proof: For the substitution oft/,, 1, we can use the

main interpolation system (see the last formula in (20) again)

knt1

. 1
= Y Wl

22
=1 n+1 — tn-‘rl—k ( )

Using (2) gives the backward differencefdh order as

(k—1) 5(k71) ’

6(k)m{rb+1 = 5(k71)$ln+1 e Ln (23)

—the 2nd term in the right side of (23) contains known sen-

sitivities att,,. Therefore, only the first term must be un-

rolled and such decreasing the order can continue until the

sensitivity vectors at,, ., andt¢,, are reached, i.e.,

5(k—1)w%+1 _ 5(k~—2)w1n+1 . 04511:12) 5(k>—2)w/m

(24)

Wl =60z 1 — ol 5Oz .
+1 +1 n+1

’ ’
Tnt+1 Tn

The equations (23) and (24) give the general formula

k-1
dMgh =l — Zas)ﬂ s g (25)
1=0
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which is an analogy of the last part of (19). Now we can _Relative interpolation errof 107° | 10~ | 1073
evaluate the terms in the right side of (22) by means of (25). CPUtime| Formula (30) | 49 64 65
For the firsttermk = 1, i.e.,l = 0 in (25)), we obtain (s) Formula (14) | 34 38 38
1 1
¢ t $§z+1 - tit ;0421 d O)w%- (26) Tab. 1. Comparison of the efficiency of the classical formula
n+1 — ln n+1l = ln with the novel one.
For the second ternk(= 2, i.e.,l = 0 or 1), we obtain
v o
ot T T References

(o2, 602, + 0}, 60at), @7)

for the third term ¢ = 3, i.e.,l = 0, 1, or 2), we obtain

1 , 1
— Ty — ———— X
tn+1'_tn 2 tn+1'_tn—2
(ol 0@t + ), 6Dty + ) 6Par,), (28)
and, for the last termi(= k41, 1.€,0 =0,..., kpr1 — 1),
we obtain
1 , 1
LTpt+1 — X

t'll-‘rl - tn+1—k71+1

-1) 6(kﬂ,+1—1)m;1) ) (29)

t'll-‘rl - tn-‘rl—kn+1

0 kn41
(o2 Faty

5(0)1:'71_’_... el

The grouping of the related terms in (26) to (29) gives the

compact form oft/, ; (i.e., “a sensitivity algebraization”):

kn+t1

./ } :
mn+1 m7t+1
=1 n+1_tn+1 k
knit1 1
0
’5744)*16 O,
t —1
=1 n+1 n+l—k
kn+t1

) <),/ 1

-, 0\, E _— -
+ =2 tn+1 - tn+1—k

1

tTLJrl - tn+17kn+1

Epg1—1) c(knss—
—&iffl ) §lkn1=1) gt

ki1 1
k=k,i1tnt1-tni1—k

which is an unrolled form of (21)—all the above formulae
are more flexible than possible ones that can be derived on

the basis of Gear’s method [10]. |

A comparison with the first-order method Several clas-
sical CAD tools have used the simplest first-order formula

al + 1 8l x! —
0x ), .\ Atag \0&), | "

() ()
8]) n+l Atn+1 oz n+l "

(30)
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instead of (14). Comparing the efficiencies of (30) and (14kreating or improving special algorithms for the circuit ana-
by means of the C.I.A. program [2], we obtain the CPU timedysis and optimization, such as time- and frequency-domain

(on Pentium 1/2.6 GHz/Windows 98 SE) in Tab. 1 for

sensitivity, poles-zeros or steady-state analyses, and creating

the sensitivity analyses of the circuit in Fig. 1—they clearlya comprehensive CAD tool for the analysis and optimization

show the usefulness of the novel formula.

of RF and microwave circuits.



