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Abstract. In this paper we propose an analytical study in 
the spectral domain of cylindrical layered structures filled 
with general bianisotropic media and fed by a 3D electric 
source. The integrated structure is characterized in terms 
of transmission matrices leading to an equivalent circuit 
representation of the whole multilayered structure. Within 
the framework of this two-port formalism, we present a 
new contribution to the computation of the Green's func-
tion arising in the analysis of multilayered conformal in-
tegrated antennas loaded with general bianisotropic mate-
rials. We also propose an analytical study of the shielding 
effectiveness of general bianisotropic materials located in 
multilayered, cylindrical configuration. The expression of 
the shielded fields sustained both by plane wave and arbit-
rary sources is obtained in a closed analytical form. Nume-
rical results are also presented showing effects of electro-
magnetic parameters on radiation pattern, matching pro-
perties and radar cross section of the integrated structure. 
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1. Introduction 
The explosion of personal communications and the 

perspectives of a large expansion in space and terrestrial 
multimedia, as well as microwave sensing and localization 
services, have introduced new requirements: 
• Extensive re-use of frequency resources in complex 

propagation environments, 
• Multiple beam operation with low side lobes for inter-

ference control, 
• Miniaturization, low cost and/or conformal design. 
These requirements can only be met with innovative or 
smart antennas in their broad sense. Modern answer to this 
problem are conformal antennas, extremely thin antennas 
which are embedded or mounted on curved structures. 

In the last years, in fact, much attention has been paid 
to the design of high-performance antennas. Accurate con-
trol of radiation properties is very important in electromag-

netic engineering applications. To this end there is a need 
to develop analytical and numerical techniques able to pre-
dict in detail the radiation and scattering performance of 
microstrip patch antennas on planar and curved surfaces. 

On the other hand, the interaction of the electromag-
netic field at microwave frequencies with layered bianiso-
tropic media has attracted the attention of the electromag-
netic community due to its potential applications in the 
field of antennas, microwave devices etc. [1]–[3]. 

Conformal antennas have been analyzed using a num-
ber of different techniques. The techniques used in these 
papers include Finite Element Method (FEM) [4], [5], Met-
hod of Moments (MoM) [6]. In the past, the geometrical 
theory of diffraction (GTD) was also successfully applied 
to predict the changes in the radiation pattern of the aper-
ture antennas caused by a finite ground plane [7]–[8]. 

The FEM has a relatively simple formulation and is 
attractive for complex, relatively small structures. Also, it 
results in sparse, banded matrices that can be effectively 
stored and solved. However, the FEM when used alone 
does not incorporate the Sommerfeld radiation condition 
and hence requires discretization to extend far from the 
source region so that the radiation condition can be impo-
sed. Recent efforts have concentrated on the use of absor-
bing boundary conditions to reduce the discretization re-
gion [9]. Unfortunately, the accuracy of these approximate 
boundary conditions depends on specific problem geomet-
ry, leading to results of unpredictable accuracy. The met-
hod of moments (MoM), on the other hand, incorporates 
the Sommerfeld radiation condition through the use of the 
appropriate Green's function. As a result, the domain dis-
cretization can be kept to a minimum. However, this met-
hod has the disadvantage of being difficult to implement 
for complex penetrable structures. This method also results 
in dense matrices whose treatment requires a big storage. 

This paper deals with the analysis of circular cylindri-
cal multilayered structures loaded with bianisotropic and/or 
inhomogeneous dielectric slabs in presence of microstrip 
patches for conformal arrays through the integral equation 
(IE) formulation combined with the method of moment 
(MoM) algorithms. To eliminate the disadvantages of this 
method, we propose a combined approach based on a ge-
neralization of the Immittance Matrix Approach and the 
Method of Line in the spectral domain. 
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First, the Maxwell's equations will be rewritten in 
terms of a coupled transmission line circuit equivalent re-
presentation for linear, homogeneous, bianisotropic circu-
lar cylindrical media. Second, the Shielding Effectiveness 
will be written in a closed analytical form, in terms of the 
primary constants of the transmission line circuit equiva-
lent representation obtained. 

The numerical method used is the method of moments 
in combination with a radial expansion scheme. Input im-
pedance, mutual coupling and shielding effectiveness are 
calculated and results are validated against measurements 
on an experimental model. 

2. Formulation of the Electromagnetic 
Problem 

2.1 Spectral Transmission-Line Equations 
The extension of the Immittance Matrix Approach 

proposed in [10–16] for the computation of the fields pro-
duced by three-dimensional (3D) sources embedded in a 
general stratified medium with circular cylindrical symmet-
ry filled with general bianisotropic media creates some dif-
ficulties since this method was originally developed to deal 
only with planar stratified structures with isotropic layers. 
We start from the Maxwell's equations (ejωt time dependen-
ce is assumed) for general bianisotropic media: 

j j
j j

∇× = − ω • − ω •⎧
⎨∇× = ω • + ω •⎩

E E H
H E H

τ μ
ε σ

 

where we used the EH (Tellegen) representation of the 
constitutive relations [17]. Under time harmonic excita-
tions, the generic entry of the four constitutive tensors is, in 
general, a complex quantity. 

We, first, adopt a cylindrical coordinate system and 
decompose the electromagnetic field vectors in their longi-
tudinal and transverse components with respect to r^–di-
rection: 
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In this geometry the generic component of the electric and 
magnetic fields can be given by: 
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being Ψ~ the generic component of the electric and magne-
tic fields in the Fourier domain. So, by applying the Four-
ier transform we can substitute ∂/∂z → jβ, and ∂/∂ϕ → jn. 

After some algebraic manipulations, we can write: 

1. Two linear relations among the longitudinal and the 
transverse components of the spectral electromagnetic 
field with respect to the radial axis: 
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2. The subsystem of differential equations describing the 
transverse components of the electromagnetic field: 
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2.2 Bianisotropic layer 
It can be verified that the matrices CVI, CIV, CVV, and 

CII satisfy the following symmetry (duality) relations: 
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which greatly add to the simplicity of the final expressions. 

In this very general case, the evaluation of the ele-
ments of the 2×2 matrix CVV is quite cumbersome. We 
found that they are given by: 
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Equation (3) represents a first order system of coupled dif-
ferential equations in the radial coordinate r. If the coeffi-
cients were independent of r, its solution could formally be 
written in terms of an infinite set of eigenmodes, each obe-
ying a r-dependence: eλr, with λ being an eigenvalue of 
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In the layered structure with cylindrical symmetry under 
examination, even for constant material parameters with 
respect to r, C depends on r via several terms. In the speci-
al case of isotropic cylindrical structures, 1/r this leads to 
the well known eigenmodes expressed in terms of Hankel 
functions. In the general bianisotropic case, we can combi-
ne the four equations (ELT) and obtain a wave equation 
with non constant coefficients for each of the four transver-
se components of the electric and magnetic field. 

System (3) can be decoupled when: 
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Let us now consider a bianisotropic medium which, adop-
ting the classification in [18], falls in the second class of 
the magnetic group of the third category: 
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A typical example of medium described by constitutive 
tensors of the second class of the magnetic group of the 
third category is the Ω medium [15]. 

When (6) holds, the subsystem of differential equati-
ons describing the transverse components of the electro-
magnetic field can be completely described in terms of the 
elements of the matrix CVI: 
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The wave equations satisfied by E~
z and H~

z are given in 
terms of the constitutive parameters: 
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The wave equations are Kummer differential equations 
[19] which can be solved in a closed analytical form in 
terms of the Bessel function of the first and second kind: 
Jn(·) and Yn(·). 
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3. Shielding Effectiveness of a Bianiso-
tropic Cylindrical Grounded Slab 
Let us, now, consider the case, which might be inte-

rested for practical applications. It comprises cylindrical 
grounded layers filled with bianisotropic and/or inhomoge-
neous media in presence of a homogeneous isotropic half-
space (see Fig.1) 

Let us first denote with: 

1. FE
1,2 , GE

1,2 the solutions of the wave equations for E~
z 

in the grounded slab (denoted with the subscript (1)) 
and in the homogeneous isotropic half-space (denoted 
with the subscript (2)), respectively, 

2. FH
1,2 , GH

1,2 the solutions of the wave equations for 
H~

z in the grounded slab and in the homogeneous iso-
tropic half-space, respectively. 

These solutions can be found in a closed analytical 
form or in terms of interpolating functions. 
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When a plane wave (no current source) impinges on 
the grounded slab of height d, the electromagnetic field 
may be represented in terms of a single spectral component 
as: Einc (x, y, z) = Ein exp[ j(kxx + kzz)], where 
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z 0 inc
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⎧ = θ ϕ
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define the angle of incidence. In this case we are able to 
derive the exact expression for the shielding effectiveness 
defined as the ratio of the total electric field that is incident 
on the boundary and the electric field that is transmitted 
through the boundary for TE(r) and TM(r) waves: 
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For TM(r) waves the shielding effectiveness is given by: 
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where we have: 
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The maximum of the shielding effectiveness is obtained 
when the following relations hold: 
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On the contrary, considering arbitrary sources, integration 
over all possible spatial frequencies has to be performed to 
get the electromagnetic fields behind the shields: 

( )2 j [x sin z cos ]
s inc0 0

E (x, y, z) E , e d d
π +∞ ξ δ+ δ= ξ δ ξ ξ δ∫ ∫ (14) 

The inverse Fourier transform of the scattered electric field 
(14) has to be computed numerically. In far zone for r · d, 
however it can be evaluated in a closed analytical form by 
applying the equivalence theorem on the interface [20]. 

4. Numerical Results 
In this section some examples of the scattering, radi-

ation and shielding features of the integrated structure with 
or without metallic patches are shown for different values 
of the electromagnetic parameters under both vertical and 
planar excitation conditions. Some experimental results are 
also presented for comparison. 

A microstrip patch antenna excited with the patch 
current directed primarily in the r direction is studied first 
and located at (ϕp, zp) (Fig.1). Because the radius of the 
excitation probe is usually a very small fraction of the ope-
rating wavelength, the probe feed can be approximately 
treated as a line source with a current density written as: 

p p
0

( ) (z z )
ˆ( ) I

r

′ ′δ ϕ −ϕ δ −
=J r r

 
Solving the unknown patch surface current excited through 
probe feed, the boundary condition that the total electric 
field tangential to the patch surface must be zero is applied. 
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Fig. 1.  Geometry of the problem. 
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Fig. 2a. Input resistance versus frequency, εr = 2.98, rc = 8.0762 cm, 

ra = 8 cm, dϕ = 4 cm, dz = 6 cm, (ϕp, zp) = (90°, 0.81 cm). 
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Fig. 2b. Input reactance versus frequency, εr = 2.98, rc = 8.0762 

cm, ra = 8 cm, dϕ = 4 cm, dz = 6 cm, (ϕp, zp) = (90°, 0.81 cm). 

The integral equation is solved by applying Galerkin mo-
ment method and using the cavity mode functions, which 
satisfy the edge singularity as the basis functions [21]. To 
test the numerical convergence of the results calculated, 12 
basis functions are required to obtain good convergent so-
lutions of the input impedance. Excellent agreement bet-
ween the results calculated and measured [22, 23] is shown 
in Fig.2. The resonant frequencies, determined from the 
zero crossing of the reactance curve, are found to be only 
very slightly affected by curvature variations. It is also 
shown that the resonant input resistance decreases when 
the cylinder radius decreases. 

The method has also been checked by reproducing 
results for special cases of non isotropic media from [24] 
(rectangular microstrip patch antenna over a cylindrical 
layer filled with a chiral material) and [25] (cylindrical 
structure filled with a lossless bianisotropic material) that 
yielded very good agreements. 

Fig. 3 shows a very good agreement with the nume-
rical results in [24], where antenna–radiated power patterns 
of a rectangular microstrip patch antenna over a cylindrical 
layer filled with a chiral material are presented. A three 
layered model is assumed, where the relative permittivity εr 
of the substrate is 2.57, the radius a of the conducting core-
cylinder is 2.5 cm, the thickness h of the chiral coating cy-
lindrical layer is 0.012 λ0 with λ0 the free-space wave-
length. The cylindrical-rectangular microstrip antenna has 
a dimension of 2 dz = dϕ = 4.02 cm. The rectangular patch 
is fed by a microstrip line parallel to the cylinder axis and 
connected to the center from its lower side. The length of 
the feeding line Lf is chosen as a multiple of λ/2, where λ 
is the guided wavelength along the line. 
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Fig. 3. Normalized power versus a polar angle θ at a fixed azi-

muth angle ϕ = 0°, ξc = 0.005, εr = 2.57, dϕ = 2dz = 4.02 cm, 
ra = 2.5 cm, rc = ra + 0.012 λ0, Lf = λ/2. 

Fig.4 shows a very good agreement with the numerical re-
sults in [25], where the radiation pattern of an axial Hert-
zian dipole at ϕ = z = 0 in a bianisotropic cylindrical 
structure is presented. The lossless bianisotropic material is 
characterized by the constitutive tensors 
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In Fig.5 we plot the return loss of probe fed patch antennas 
loaded by different bianisotropic materials. The main re-
sults are the reduction of the resonance frequency when the 
bianisotropic effect increases and a rotation of the main lo-
be direction of about five degrees. This result may be attri-
butable to a pair of weakly attenuated, coupled leaky wa-
ves which propagate in the bianisotropic medium after their 
excitation. The radiation patterns, by changing the bianiso-
tropy in a certain range, are very close to each others. Due 
to this fact, the dominant effect of the bianisotropic mate-
rial is the reduction of the resonance frequency and, there-
fore, we can think of designing a microstrip antenna with 
smaller layout dimensions. 
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Fig. 4. Radiation pattern for an infinitesimal current at a fixed 

azimuth angle ϕ = 0°, f = 3 GHz, ra = 5 cm, rc = 5.1 cm, τ1 = 
= 1.3j. 

8 9 10 11 12
-8

-6

-4

-2

0

R
et

ur
n 

Lo
ss

 (d
B

)

Frequency (GHz)

 σ
rϕ

=j2c-1
0

 σrϕ=j4c-1
0

 σ
rϕ

=j6c-1
0

x̂  
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Fig. 5. Return loss versus frequency, dϕ = 1.2 cm, dz = 1.6 cm, 

ra = 8 cm, rc = 8.08 cm, (ϕp , zp) = (90°, 0.45 cm), εrr = εzz = 
ε0, εϕϕ = 2.2 ε0, μ rr = μϕϕ = μzz = μ0, σϕr = τϕr = j 10 c0

-1, c0
-1 = 

= (μ0 ε0)1/2. 

5. Conclusions 
In this paper we have presented a derivation of the 

equivalent two-port circuit representation along the 
stratification axis for bianisotropic cylindrical layered 
structures. We have proposed also an analytical study of 
the shielding effectiveness of both bianisotropic materials 
located in multilayered configuration deducing the 
expression of the shielded fields sustained both by plane 
wave and arbitrary sources in a closed analytical form. 
Numerical results have been, also, presented showing the 
effects of the electromagnetic parameters on the field 
quantities of the integrated structure. 
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