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Abstract. In the paper, an original methodology for the 
automatic creation of neural models of microwave struc-
tures is proposed and verified. Following the methodology, 
neural models of the prescribed accuracy are built within 
the minimum CPU time. 

In section 2 of this paper, the proposed methodology 
of creating neural models is described, and its application 
is illustrated by developing the neural model of a frequency 
selective surface (FSS). In section 3, the neural model of 
FSS is associated with genetic algorithms to obtain a tool 
for the global design. The section 4 concludes the paper. Validity of the proposed methodology is verified by develo-

ping neural models of selected microwave structures. 
Functionality of neural models is verified in a design – 
a neural model is joined with a genetic algorithm to find 
a global minimum of a formulated objective function. The 
objective function is minimized using different versions of 
genetic algorithms, and their mutual combinations. 

2. Neural Design 
Neural networks have been widely used in electronics 

since middle eighties. Their development has been related 
to the rapid grow of a potential computational power of 
computers. In the area of microwave applications, neural 
networks have been used for computing resonance fre-
quency of microstrip antennas [10], modeling microwave 
circuits [11], [12], computing effective permitivity of mic-
rowave lines [13], and many other applications. Neverthe-
less, the general methodology of their utilization has been 
missing. 

The verified methodology of the automated creation of ac-
curate neural models of microwave structures, and their 
association with global optimization routines are the most 
important original features of the paper. 

Keywords 
We have developed methodologies for creating neural 

models of scatterers (represented by FSS), transmission 
lines (represented by a microstrip in layered media), and 
planar antennas (represented by a microstrip dipole). Com-
mon features of those methodologies have been extracted 
into a general recipe [14]. 

Artificial neural networks, genetic algorithms, metho-
dology of developing neural models Bayesian regula-
rization, Levenberg-Marquardt algorithm. 

1. Introduction 
The basic principles of the developed methodology 

are demonstrated on modeling a FSS, which consists of 
a periodic array of perfectly electrically conductive rectan-
gular patches on an infinite substrate. Parameters of the 
substrate are identical with the parameters of the surroun-
dings. 

In the microwave frequency band, dimensions of 
components are comparable to the wavelength. Therefore, 
Maxwell equations have to be solved when analyzing mic-
rowave structures (so called full-wave analysis) [1], [2]. 

CPU-time demands of the full wave analysis are its 
basic problem. In order to reduce CPU-time requirements, 
artificial neural networks can be used: the neural network 
is trained to provide the same results like the full-wave 
analysis, and therefore, the numerical model can be repla-
ced by the neural one [3]–[6]. 
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CPU-time modest neural models can be combined 
with genetic algorithms to perform the global optimization 
of the designed structure [3]–[6]. While genetic algorithms 
are well-described in the open literature, e.g. [7]–[9], the 
methodology of creating neural models has not been pub-
lished yet. 

 
Fig. 1. Frequency selective surface. 
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The described FSS is analyzed by the spectral domain 
method of moments to build a training set. Input patterns 
are created by doublets [b, B] where b is the width of the 
rectangular patch and B is the width of the substrate cell 
containing the patch (Fig. 1). Output targets are formed by 
triplets [f

Let us assume that the optimal architecture of the 
neural model has been found. This fact does not necessa-
rily mean that the neural model provides results with the 
training accuracy (column Accuracy Achieved in Tab. 1). 
For input patterns, which differ from the training ones, the 
modeling error might be much higher. The optimal archi-
tecture therefore means that the modeling accuracy is suf-
ficient (below 5 %), and that the number of efficiently used 
parameters of the neural network is within 50 % to 80 %. 

1, f2, f3] where f2 is the frequency of the first maxi-
mum of the module of reflection coefficient, and f1 and f3 
are frequencies of 3 dB decrease of the module of reflec-
tion coefficient. In analysis, we assume the Floquet mode 
(0, 0), and the vertical polarization of the incoming wave. For the optimal architecture of the neural model, fur-

ther tests and improvements have been performed: The neural model is going to be built over the input 
space b ∈ <1 mm, 7 mm> and B ∈ <10 mm, 22 mm>. Ini-
tially, the input space is roughly sampled using the equidis-
tant sampling (the step length was set to 3 mm in our case). 
Hence, the initial input pattern has consisted of 3 × 5 va-
lues. In the following steps, the sampling is refined in re-
gions exhibiting an unacceptably high modeling error. 

• The same architecture has been trained using Leven-
berg-Marquardt algorithm to refine network settings; 

• The input set has been enriched by additional training 
points in regions, where the desired accuracy has not 
been reached (training has been repeated by both the 
Bayesian regularization and the Levenberg-Marquardt 
algorithm); The initial architecture of the feed-forward neural net-

work has contained 2 hidden layers each having 4 neurons. 
The network has been trained to provide the same results 
like the full-wave analysis: the maximum number of cycles 
has been set to 500, the desired accuracy to 10

• A small number of neurons (one or two) has been 
removed from the first hidden layer or the second one 
to prevent over-training [16]–[18], and consequently, 
the network has been trained with Levenberg-Mar-
quardt algorithm; 

-6, and Bay-
esian regularization has been used for training (see Tab. 
1.). Finishing the training, the model accuracy has been 
tested by comparing network outputs and analysis results 
for the sampling step 0.5 mm (thus, the input space is re-
presented by the matrix consisting of 13 × 25 values). If an 
unacceptably high modeling error is exhibited, the neural 
network architecture is refined. 
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1 4 4 77 6.77 ⋅ 10-6 501 500 

2 5 5 63 4.29 ⋅ 10-6 501 500  
3 5 5 57 1.24 ⋅ 10-5 501 500 Fig. 2. An error of the FSS neural model trained by Bayesian re-

gularization, Δb = ΔB = 3 mm. 4 5 5 62 3.99 ⋅ 10-6 501 500 

5 5 6 04 5.62 ⋅ 10-1 132 500 

6 5 6 04 5.62 ⋅ 10-1 124 500 

7 5 6 04 5.62 ⋅ 10-1 136 500 

8  6 6 48 4.72 ⋅ 10-6 501 500 

9 6 6 49 3.43 ⋅ 10-6 501 500 

10 6 7 48 4.45 ⋅ 10-6 501 500 

11 5 6 43 2.91 ⋅ 10-6 501 500 

12 5 6 52 3.53 ⋅ 10-6 529 600 

13 5 6 56 3.05 ⋅ 10-6 474 600 

14 5 6 04 5.62 ⋅ 10-1 130 600 

15 5 6 04 5.62 ⋅ 10-1 130 600 
 

Fig. 3. An error of the FSS neural model trained by Levenberg-
Marquardt algorithm, Δb = ΔB = 3 mm. 

Tab. 1. Results of searching the optimal neural network architec-
ture using Bayesian regularization. 
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where f~• The third hidden layer can be potentially added in bet-
ween the already existing hidden layers to prevent 
over-training [16]–[18], and consequently, the net-
work has been trained with Levenberg-Marquardt. 

n(b, B) is a frequency at the n-th output of the 
neural model, and fn(b, B) denotes the frequency computed 
by the numerical analysis of the frequency-selective surfa-
ce. Obviously, the error is lower than 3 % in case of the 
Bayesian training except of the region b ∈ <6 mm, 7 mm> 
and B ∈ <10 mm, 12 mm>. Hence, this region has to be 
sampled using a shorter sampling step, the training set has 
to be enriched by new patterns, and the training has to be 
repeated. 

Results of the tests are depicted in Fig. 2 for the Bayesian 
training and in Fig. 3 for the Levenberg-Marquardt 
training. Training results are expressed in the form of the 
percentage cumulative error 
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BbfBbfBbc  (1) In case of the Levenberg-Marquardt training, there 

are three regions, which have to be refined. 
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Page 2

Desired accuracy reached or number
of cycles greater than 5?

Test of accuracy of winning architecture,
trained by Levenberg-Marquardt (L-M) algorithm

YES

NO

Points with error greater then 90%
of desired one added into training

pattern

Test of accuracy of modified network (neurons
removed, extra hidden layer) with higher density

input pattern, trained by L-M algorithm

Test of accuracy of winning architecture with
added points, trained by L-M algorithm

Test of accuracy of winning architecture
trained by Bayesian regularization

Create higher density input pattern

Test of accuracy of network with higher density
input pattern, trained by L-M algorithm

Test of accuracy of modified architecture
(neurons removed, extra hidden layer),

trained by L-M algorithm

Results processing

END

Test of accuracy of winning
architecture with added points

trained by Bayesian regularization

 
Fig. 4. Methodology of the efficient creation of the neural models of microwave structures: the flowchart diagram of getting the optimal 

architecture and training neural network model. 
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Results of the tests (Figures 2 and 3) have been recorded, 
and the algorithm for optimizing the network architecture 
was generalized in the flowchart (Fig. 4). In this flowchart, 
all the necessary steps for reaching the goal have been dis-
played. 

A general conclusion for the neural network design 
can be formulated as follows: 

1. Create a basic architecture and optimize it using Bay-
esian regularization. 

2. In case the model does not reach the desired accuracy: 
A. Add extra points into the input pattern regions, 

where the error is unacceptably high, and repeat 
the Bayesian regularization. 

B. Modify the neural network architecture (change 
the number of hidden neurons) and re-train the 
network using Levenberg-Marquard (LM). 

C. Increase the number of input patterns by adding 
extra points in between existing ones, and re-train 
the neural model using LM algorithm. 

In detail, the algorithm is depicted in Fig. 4.Following the 
methodological flowchart, the neural model of FSS has 
been developed with a prescribed accuracy. In section 3, 
we describe its association with genetic algorithms in order 
to obtain a tool for designing FSS. 

3. Genetic Algorithms 
The genetic optimization is asked to find such dimen-

sions b, B of the FSS (see Fig. 1) to have the maximum of 

the reflection coefficient f2 and its 3 dB decrease f1 and f3 
on the desired frequencies. In order to speed up the design 
process, the objective function is evaluated by calling the 
neural model instead of the numerical analysis. 

The genetic optimization was run with the following 
parameters [7]–[9]: 
• The number of individuals in each generation: 

I = [10; 20; 50]; 
• The number of generations: 

G  = [20; 50; 200]; 

• Selection strategies: 

o Population decimation, 
o Tournament selection, 
o Random combination of both selection strategies; 

• Probability of crossover and mutation: 
pc = [0.9; 0.7; 0.5], pm = [0.1; 0.5; 0.9]; 

• Maximum acceptable value of the objective function: 
fmax = 0.05. 

Results for each combination of parameters I, G, pc and pm 
are given in Tab. 2. Considering the results obtained, the 
following conclusions can be stated: 

• I = 10 individuals in a generation, and G = 20 genera-
tions for an optimization run are sufficient. Probabili-
ty of crossover pc = 10 to 50 %, and probability of 
mutation pm = 10 % were optimal for designing FSS. 

• No selection strategy wins, all strategies and their 
combinations give satisfactory results. 

 

  0,9 0,9 0,9 0,5 0,5 0,5 0,1 0,1 0,1 pm

I G 0,1 0,5 0,9 0,1 0,5 0,9 0,1 0,5 0,9 pc

10 20 0,239 0,055 0,062 0,093 0,070 0,052 0,051 0,024 0,036 0,447 

10 50 0,359 0,052 0,105 0,005 0,057 0,165 0,044 0,055 0,024 0,509 

10 200 0,057 0,015 0,058 0,056 0,045 0,059 0,055 0,040 0,044 0,372 

20 20 0,128 0,055 0,042 0,048 0,105 0,104 0,046 0,029 0,049 0,482 

20 50 0,066 0,103 0,191 0,021 0,030 0,055 0,060 0,035 0,054 0,428 

20 200 0,066 0,077 0,118 0,053 0,060 0,061 0,054 0,048 0,051 0,475 

50 20 0,080 0,047 0,051 0,053 0,075 0,091 0,095 0,059 0,062 0,522 

50 50 0,966 0,029 0,074 0,026 0,033 0,145 0,055 0,081 0,045 0,493 

50 200 0,079 0,044 0,219 0,094 0,074 0,005 0,047 0,025 0,061 0,431 

 Σ 1,078 0,377 0,704 0,359 0,447 0,577 0,415 0,318 0,368 4,163 

Tab. 2. The resultant minimum values of the objective function depending on different values of parameters I (the number of individuals in 
a generation), G (the number of generations in a single run of the optimization), pc (probability of crossover), and pm (probability of 
mutation) when frequency-selective surfaces were optimized applying tournament selection. 

 

4. Conclusions 
In the paper, the methodology of developing CPU-

time modest and efficient neural models of microwave 
structures has been proposed. The methodology has been 
explained on an example of a frequency-selective surface. 

In order to demonstrate the abilities of the neural mo-
del, we associated it with a genetic algorithm to design 
a frequency-selective surface of prescribed properties. Re-
sults of the neural design were verified by the full-wave 
analysis by the spectral domain method of moments with 
a good correspondence (the declination below 5 %). 
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The presented methodology was also verified on other 
planar microwave structures [14]: a microstrip in layered 
media represented microwave transmission lines, and a pla-
nar dipole on various substrates represented microwave 
antennas. Also here, the declination of the neural modeling 
was below 5 % compared to the full-wave analysis. 

In our research, we concentrated on feed-forward 
neural networks. The further development is planned to be 
focused on different types of neural networks – recurrent 
ones, and radial basis ones. 
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