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Abstract. The aim of this paper is to provide a survey of 
the recent development in new algorithms and techniques 
to solve the electrical impedance tomography (EIT) inverse 
problem. The EIT problem is nonlinear and ill-posed. The 
modified Newton-Raphson method with the Tikhonov regu-
larization and the differential evolution algorithm are used 
to obtain high-quality reconstruction in EIT problems. Nu-
merical results of the reconstruction based on both deter-
ministic and heuristic methods are presented and compa-
red. Finally, we provide recommendations of solutions of 
still open problems in this field.  
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1. Introduction 
Electrical impedance tomography is a widely investi-

gated problem with many applications in physical and bio-
logical sciences. Geophysical imaging is used for finding 
underground conducting fluid plumes near the surface and 
obtaining information about rock porosity or fracture for-
mation. Another application of EIT is for example in non-
destructive testing and identification of material defects 
like cracks, or identification of corrosion in production ma-
terials. Medical imaging can be used primarily for detecti-
on of pulmonary emboli, non-invasive monitoring of heart 
function and blood flow, and for breast cancer detection. 

The theoretical background of EIT is given in [1]. 
The basic principle of EIT is very simple. The currents are 
applied through the electrodes attached to the surface of the 
object and the resulting voltages are measured using the sa-
me or additional electrodes. Internal impedivity distributi-
on is recalculated from the measured voltages and currents. 
It is well known that while the forward problem is well-po-
sed, the inverse problem is highly ill-posed. Various nume-
rical techniques with different advantages have been deve-
loped to solve this problem. The aim is to reconstruct, as 
accurately and fast as possible, the impedivity distribution 
in two or three dimensional models. 

So the EIT image reconstruction problem is an ill-
posed inverse problem of finding such internal impedivity 
distribution that minimizes certain optimization criteria. 
The optimization necessitates algorithms that impose regu-
larization and some prior information constraint. The regu-
larization techniques vary in their complexity. This paper 
proposes new variants of the regularization techniques to 
be used for the acquirement of more accurate reconstruc-
tion results and the possibility of applying the differential 
evolution algorithm in an optimization process. 

2. Forward and Inverse Problem 
EIT is used to reconstruct the impedivity distribution 

by the measured surface electric potential distribution 
around the phantom when injecting current into the object. 
Usually, a set of voltage measurements is acquired from 
the boundaries of the determined volume, whilst it is sub-
jected to a sequence of low-frequency current patterns. In 
principle, measuring both the amplitude and the phase ang-
le of the voltage can result in images of electric conducti-
vity and permitivity in the interior of the model. Alterna-
ting current patterns are preferred to direct current ones to 
avoid polarization effects. Since the frequency of the injec-
ted current is sufficiently low, usually in the range of 10-
100 kHz, EIT can be treated as a quasi-static problem. So 
we only consider the conductivity for simplicity. The scalar 
potential U can be therefore introduced, and so the resul-
ting field is conservative and the continuity equation for 
the volume current density can be expressed by the poten-
tial U: 

div( grad ) 0Uσ =  . (1) 

Equation (1) together with the modified complete electrode 
model equations [2] are discretized by the finite element 
method (FEM) in the usual way. Using FEM we calculate 
approximate values of electrode voltages for the approxi-
mate element conductivity vector σ (NE x 1), NE is the 
number of finite elements. Furthermore, we assume the 
constant approximation of a conductivity distribution σ on 
the finite element region. The forward EIT calculation 
yields an estimation of the electric potential field in the 
interior of the volume under certain Neumann and Dirichlet 
boundary conditions. The Finite Element Method in two or 
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three dimensions is exploited for the forward problem with 
current sources. Image reconstruction of EIT is an inverse 
problem, which is usually presented as minimizing the suit-
able objective function Ψ(σ) relative to σ: 

min ( )σ σΨ  

where 

( ) ( ) 2
M FEM

1Ψ
2

σ σ= −∑ U U  . (2)  

Here σ is the volume conductivity distribution vector in the 
object, UM is the vector of measured voltages on the boun-
dary, and UFEM(σ) is the vector of computed peripheral 
voltages in respect to σ which can be obtained using the 
finite element method (FEM). 

3. Proposed Techniques for Inverse 
Problem 
From a mathematical perspective, the EIT inverse 

problem searches for parameters in a high-dimensional 
space. To minimize the objective function Ψ(σ) we can use 
a deterministic approach based on the Least Squares (LS) 
method. Due to the ill-posed nature of the problem, regu-
larization has to be used. A heuristic approach based on 
suitable modification of the Differential Evolution algo-
rithm provides another possibility of solving the EIT prob-
lem successfully. 

3.1 Tikhonov Regularization 
First the standard Tikhonov Regularization method 

(TRM) described in [3] was used to solve this inverse EIT 
problem. So we have to minimize the objective function 
Ψ(σ) 

( ) ( ) 2 2
M FEM

1Ψ
2

Lσ σ α σ= − +∑ U U  (3) 

where α is a regularization parameter and L is a regulariza-
tion matrix connecting adjacent elements of the different 
conductivity values. For the solution of (3) we applied the 
Newton-Raphson method and after the linearization we 
used the iteration procedure 
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Here i is the i-th iteration and J is the Jacobian for forward 
operator UFEM. The Jacobian can be calculated very effecti-
vely, for example by using the reciprocity principle [4]. 
This iterative procedure and its improvements [5], [6] are 
commonly used in the EIT inverse problem for their fast 
convergence and good reconstruction quality. However, 
they are likely to be trapped in local minima and so sophis-
ticated regularization must be taken into account to obtain 
the stable solution. 

Applying both the described reconstruction algo-
rithms, it is often very difficult to ensure the stability and 
sufficient accuracy of the required solution, because of 
their sensitivity to the suitable choice of the regularization 
parameter α, as well as starting values of conductivity σ. 

The stability of the TRM algorithm is a bit sensitive 
to the setting of the starting value of conductivity. The re-
gularization parameter α controls the relative weighting 
allocated to the prior information. Its optimal choice provi-
des balance between the accuracy and stability of solution. 

On the basis of many numerical experiments, it is 
supposable that we obtain higher accuracy of the recon-
struction results for smaller value of the parameter α, but if 
the value of α is decreasing, the instability of the solution 
is increasing. In this novel approach, we search the optimal 
value of α during the iteration procedure using the follo-
wing algorithm 

set starting variable σ, initialize parameter α  
while  
regularization is stable and  
reduction of Ψ has been obtained 

use to recover optimized value of σ 
decrease α 

end while 

In this way (TRMα), we can obtain the stable solution with 
required higher accuracy of the reconstruction results. 

3.2 Differential Evolution Algorithm 
Global optimizing evolutionary algorithms, such as 

genetic algorithms, have been recently applied to the EIT 
problem [7]. Some results of genetic algorithm research are 
described in [8]. Compared to the genetic algorithm, the 
differential evolution algorithm (DEA) is a relatively new 
heuristic approach to minimizing nonlinear and non- diffe-
rentiable functions in a real and continuous space. DEA 
converges faster and with more certainty than many other 
global optimization methods according to various numeri-
cal experiments. It requires only a few control parameters 
and it is robust and simple in use. 

The DEA maintains a population of constant size that 
consists of N real-valued vectors xi, G, i =1, 2, 3, …., N, 
where i indicates the index of population and G is the gene-
ration the population belongs to. 

The initial population of DEA is randomly generated 
within the feasible range of the parameter. Subsequently, 
mutation is performed. For each target vector xi, G a mutant 
vector vi, G+1 can be generated  

, 1 , , , 1, 2,( ) ( )i G i G p best G i G p r G r Gv x x x x xα α+ = + − + −  

where xbest, G is the best member of the current population, 
random indexes r1, r2 ∈ {1, 2, 3, …, N} are mutually dif-
ferent integers, at the same time different from running in-
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dex i.  Parameter αp ∈ (0, 2〉 is a real constant which con-
trols the amplification of the differential variations. 

Crossover is introduced to increase the diversity of 
the population. New vectors are formed using random ge-
neration, permutation and replacement of randomly chosen 
parts of two different individuals. To decide whether or not 
the new vector should become a member of generation 
G + 1, the new vector is compared with the target vector 
xi, G. The vector with a smaller objective function is retain-
ed in minimization. Finally, to guarantee the parameter va-
lues located inside their allowed ranges after reproduction, 
a simple method of replacing the parameter values that 
violate boundary constraints with random value generated 
within feasible range is used. 

The evolution will be determined once the objective 
function reaches a predetermined value or the evolution 
comes to the present generations. 

4. Simulation Results and Comparison 
The following examples describe the use of the above 

mentioned methods for recovering a collection of linear 
cracks in a homogeneous electrical conductor from boun-
dary measurements of voltages induced by specified cur-
rent fluxes. To recover conductivity distributions the LS 
method with a different type of the regularization’s way 
was used. Furthermore, we compare the results obtained by 
DEA together with the results which were recovered by the 
TRMα to different values of the regularization parameter α 
during the reconstruction’s process and the initial values of 
conductivityσ . To evaluate the quality of simulation re-
sults, the total error Err of the recovered conductivity dis-
tribution σ is defined as 

2

1

2

1

( ( ) ( ))
100 %

( ( ))

NE

orig
i

NE

orig
i

i i
Err

i

σ σ

σ

=

=

−
=
∑

∑
 (5) 

where σorig (in S/m) is the actual (original) value, σ is the 
value recovered by EIT.  

The above proposed algorithms for 2D model have 
been implemented into the modification of the program [9] 
which has been written in MATLAB 7.0.4. Both the above 
described techniques have been applied to 3D model and 
have been implemented into a new program written in 
ANSYS. 

4.1 Examples in 2D 
Example of 2D arrangement for a numerical experi-

ment is given in Fig. 1. Circle model is shown with dimen-
sions in cm; the total number of electrodes is 20. We appli-
ed a total of 20 different cosine current excitations calcu-
lating 19 independent nodal voltages for each excitation. 

Two different examples of a crack’s distribution are 
presented. One of them is the following. In Fig. 2 you can 
see the FEM mesh for calculations of the gradients, voltage 
reference values and the Jacobians during iterations. The 
total number of elements is NE = 500, the number of nodes 
is NU = 271. We assume a homogeneous object with con-
ductivity 6·107 S/m on all elements except for the chosen 
ones where the values of conductivity are 0 S/m; on twelve 
colored elements in Fig. 2. These elements can represent 
some cracks. 

current source I 
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Fig. 1.  An arrangement for 2D experiments. 
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Fig. 2.  FEM grid and elements with non-homogeneity. 

The recovered conductivity distribution obtained using 
TRMα is shown in Fig. 3 and using DEA with number of 
generations G = 60 is shown in Fig. 4. 

Another example of the crack’s distribution is in Fig. 
5 and experimental results are shown in Fig. 6 and Fig. 7. 

The starting and final values of parameter α, primal 
objective function Ψ(σ), and total error Err are given in 
Tab. 1 – example 1 and in Tab. 2 – example 2. 

The suitable choice of starting value of parameter α is 
necessary to assure the stability of the reconstruction pro-
cess using TRMα. 
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Fig.3.  Final conductivity distribution obtained using TRMα. 
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Fig.4.  Final conductivity distribution obtained using DEA. 
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Fig.5.  FEM grid and elements with non-homogeneity. 

4.2 Examples in 3D 
There is an FEM grid with 570 nodes, 432 elements 

and 40 electrodes in Fig. 8. The radius of the cylinder is 10 
cm, its height is 20 cm. We applied a total of 40 different 
current excitations calculating 39 independent nodal volta-
ges for each excitation. 
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Fig.6.  Final conductivity distribution obtained using TRMα. 
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Fig.7.  Final conductivity distribution obtained using DEA. 

 
 TRM TRMα DEA 

α, starting 5·10-40 5·10-40 - 

α, final 5·10-40 1·10-45 - 

Ψ(σ), starting 2·10-17 2·10-17 5·10-14 

Ψ(σ), final 1·10-17 8·10-18 3·10-19 

Err, starting 30% 30% 27% 

Err, final 22% 9% 11% 

Tab. 1.  Comparison of recovered results for example 1. 

 
 TRM TRMα DEA 

α, starting 5·10-40 5·10-40 - 

α, final 5·10-40 4·10-43 - 

Ψ(σ), starting 5·10-18 5·10-18 5·10-14 

Ψ(σ), final 1·10-18 3·10-19 7·10-20 

Err, starting 35% 35% 27% 

Err, final 25% 11% 10% 

Tab. 2.  Comparison of recovered results for example 2. 
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Fig. 8.  FEM grid and the position of electrodes for 3D testing. 

 
Fig. 9.  Five selected elements with non-homogeneity. 

We assume homogeneous object with conductivity 10 S/m 
on all elements except for the chosen ones where values of 
conductivity (on five blue color marked elements in Fig. 9) 
are 0 S/m. These elements can represent some cracks. 

An example of the reconstruction results, using Tik-
honov regularization with optimized value of the parameter 
α, is given in Fig. 10 and Fig. 11. The starting values of 
conductivity are 8 S/m on all elements; the starting value of 
parameter α is 1·10-10 and its final value is 0.3·10-17. The 
conductivity distribution after 2 iterations is shown in Fig. 
10 and the final conductivity distribution after 30 iterations 
in Fig. 11. 

The conductivity changes on the elements with non-
homogeneities during the iteration process are shown in 
Fig. 12. The final value of the primal objective function 
Ψ(σ) is 5.3·10-39 and the total error Err is 0.01 %. 

To recover the conductivity distribution according to 
Fig. 9 we also use the differential evolution algorithm.  

Experimental results are shown in Fig. 13; here you 
can see the starting values of the conductivity distribution. 
The final values of the recovered conductivity of the best 
member of 207 generation are shown in Fig. 14. The final 
value of the primal objective function Ψ(σ) is 2.8·10-14 and 
the total error Err is 16 %. 

 
Fig. 10.  Conductivity distribution after 2 iterations. 

 
Fig. 11.  Final conductivity distribution obtained using TRMα. 
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Fig. 12.  Conductivity changes on non-homogeneities. 

5. Conclusions 
In this paper, a new practical approach to the recon-

struction of non-homogeneities using EIT has been pre-
sented. Many numerical experiments performed during the 
above described research have resulted in the conclusion 
that the applications of the TRMα and DEA reconstruction 
algorithm have an advantage over the TRM approach. We 
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mostly obtain higher accuracy using the TRMα but there is 
often an unstable reconstruction process. On the other hand 
the results obtained using DEA are less accurate but there 
is always a stable process. All the results stated above as 
well as many other examples were obtained using a prog-
ram written in MATLAB for 2D reconstruction and in AN-
SYS for 3D reconstruction by the authors.  

 
Fig.13.  Starting values of a conductivity distribution. 

 
Fi g. 14.  Final conductivity distribution obtained using DEA. 

It would be very worth to try another new ways of an ef-
fective and an absolutely stable reconstruction of the con-
ductivity distribution with the highest accuracy. It can be 
tested for example an apposite combination of certain 
heuristic technique with the widely known method Total 
Variation Primal Dual-Interior Point Method [9], methods 
based on Genetic Algorithm, Level Set Method [10] etc. 
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