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Abstract. The paper describes the methodology of the 
automated creation of neural models of microwave 
structures. During the creation process, artificial neural 
networks are trained using the combination of the particle 
swarm optimization and the quasi-Newton method to avoid 
critical training problems of the conventional neural nets. 
In the paper, neural networks are used to approximate the 
behavior of a planar microwave filter (moment method, 
Zeland IE3D). In order to evaluate the efficiency of neural 
modeling, global optimizations are performed using nume-
rical models and neural ones. Both approaches are compa-
red from the viewpoint of CPU-time demands and the 
accuracy. Considering conclusions, methodological re-
commendations for including neural networks to the mic-
rowave design are formulated. 
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1. Introduction 
The design of electromagnetic (EM) structures is 

usually based on exploiting their numerical models. Nume-
rical models request high computational power. Their eva-
luation has to be repeated many times in the optimization 
cycle: each update of the optimized parameters has to be 
followed by a new analysis. Replacing a numeric model of 
the designed EM structure by a neural one is one of ways 
to reduce CPU-time demands [1]. 

At the present, two basic approaches are used to opti-
mize neural models of EM structures: conventional neural 
optimization and several new methods were described in 
detail in [2]. A conventional approach exploiting feed-
forward neural networks (NN) and recurrent ones (trained 
by gradient algorithms) is used for an automated develop-
ment of EM models in most cases. Unfortunately, this 
technology exhibits several imperfections: 

• The training has to be repeated several times in order 
to reveal a global minimum by local (gradient) opti-
mization techniques. If the local algorithm is replaced 

by a global one (genetic, particle-swarm [3], etc.), the 
training consumes enormous CPU power. 

• Developed neural models can suffer from over-
training: the training process minimizes errors in 
training patterns, but interlaying points exhibit a rela-
tively high error. 

In the paper, possible solutions of the above-listed 
problems are proposed and applied to modeling EM 
structures: 

• Global training algorithms and local one are suitably 
combined in order to obtain a robust and efficient 
training procedure. 

• A methodology of the automated creation of neural 
models is proposed in order to eliminate the problems 
of over-training, an inappropriate architecture, and 
related difficulties. 

The proposed approaches are tested and verified by 
modeling a canonical electromagnetic structure (a planar 
low-pass filter described in Section 2). In the second part 
of the paper, the developed neural model is used in con-
junction with an optimization procedure in order to im-
prove efficiency of the filter design. 

2. Filter Description 
A planar filter is chosen to be modeled (a three-pole 

low-pass stepped impedance filter with Chebychev respon-
se; Fig. 2). The cut-off frequency is fc = 1 GHz, the pass-
band ripple equals to 0.1 dB, and the source/load impedan-
ce is Z0 = 50 Ω. The filter is etched on the substrate with 
the dielectric constant εr = 10.8 and height h = 1.27 mm. 

The filter consists of five microstrip lines. The first 
segment and the last one are of the characteristic impedan-
ce Z0 = 50 Ω at the cut-off frequency. The second segment 
and the fourth one are inductive lines of the characteristic 
impedance ZL = 93 Ω. The third segment line is capacitive 
(the characteristic impedance ZC = 24 Ω). 

The width of the input/output microstrip line equals to 
w0 = 1.1 mm to get Z0 = 50 Ω at the cut-off frequency. Ini-



72 P. ŠMÍD, Z. RAIDA, AUTOMATED MODELING OF MICROWAVE STRUCTURES BY ENHANCED NEURAL NETWORKS 

tially, we set the dimensions of the reactive segments of the 
filter to the following values: 

• The length and the width of the inductive segments 
are lL0 = 9.81 mm, and wL0 = 0.20 mm, respectively. 

• The length and the width of the capacitive segment is 
lC0 = 7.11 mm, and wC0 = 4.00 mm. 

Around the point [lL0, lC0], we wish to approximate the de-
pendence of the filter forward gain s21( lL, lC, f) for the fi-
xed widths of inductive segments wL = 0.20 mm and the 
capacitive one wC = 4.00 mm, changing the frequency from 
the cut-off one fc = 1.0 GHz to fmax = 5.0 GHz. The depen-
dence is approximated by a feed-forward neural network. 

3. Neural Model 
The filter is modeled by a feed-forward artificial 

neural network [1], [4]. Artificial neural networks (ANN) 
are electronic systems (software or hardware ones) which 
structure is similar to a human brain. Feed-forward ANN 
consists of a set of neurons placed in several layers. Synap-
tic weights between neurons are set during the learning 
process [1], [4]. 

Feed-forward ANN statically maps the input patterns 
into output ones. The output response is formed by multi-
plying and summing input signals and by processing the 
result by a non-linear activation function. 

During the training process, ANN is learned to beha-
ve the same way as the numeric model of the filter: consi-
dering dimensions and permittivities of the analyzed struc-
ture as input parameters, the neural model provides input 
impedances, directivity patterns, gains and other parame-
ters of the structure as the output patterns. 

Training the ANN is a time-demanding process. 
Nevertheless, when a trained ANN is used, we can expect 
lower time demands compared to numerical models. Since 
summation, multiplication and evaluating non-linear acti-
vation function are the only three mathematical operations 
needed to compose the output; the modeling with learned 
ANN is very efficient and faster than numerical methods. 

The training process is based on the minimization of 
the highly non-linear error function of the ANN. Explo-
iting standard gradient algorithms, the training is usually 
stopped in a local minimum located in the near distance 
from the starting point. Therefore, the training should be 
started with a global algorithm, and later on switched to 
a gradient method. 

In order to create a neural model of the filter, we need 
to prepare training patterns. First, the set of input patterns 
is obtained by combining all the values of all the state 
parameters (lL, lC, f). Next, the target patters s21( lL, lC, f) are 
computed using a numerical method (Zeland IE3D). The 
analysis is repeated for all the input parameters (all the trip-
lets [lL, lC, f]). Finally, the training patterns are obtained by 
integrating input patterns and corresponding output ones. 

The neural network consists of three neurons in the 
input layer (three state parameters), several neurons in hid-
den layer(s) and one output neuron (one target parameter 
s21). The number of hidden layers and neurons in them can 
be estimated using Bayesian regularization e.g., or, if the 
ANN contains only one hidden layer, according to [5] 
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In (1), n1 denotes the number of neurons in the hidden 
layer, n0 is the number if input neurons (input distributing 
nodes) [1], [4] and R denotes the number of training pat-
terns. First, synoptic weights of the ANN are set randomly. 

Next, the ANN has to be trained. The input patterns 
are repeatedly introduced to the input neurons and the sy-
noptic weights and biases are changed to minimize the dif-
ference between ANN output and target patterns. 

The neural network has to be trained to be able to ap-
proximate the target parameters according to the input 
ones. In order to obtain such a model, the training process 
consists of the following steps: 

1. The equidistant training patterns are extracted from 
the file of pre-computed patterns. The patterns are 
pre-computed by Zeland IE3D. 

2. The number of hidden neurons is computed according 
to the number of training patterns (1). 

3. If more hidden neurons than the number of neurons in 
the previous run of the algorithm are necessary, or if 
the algorithm runs for the first time, a new ANN of 
random synoptic weights is built. Otherwise, we have 
to go to the step 8. 

4. Pre-training the ANN using PSO produces several 
ANN. The best neural networks are selected (several 
ANN with the lowest error over the training patterns) 
and stored for the next training. 

5. The selected neural networks are trained with the gra-
dient Levenberg-Marquardt (LM) method. Training is 
stopped if one of the following conditions can occur: 

- the error over the training patterns drops below a 
prescribed tolerance; 

- the error decreases below the prescribed dropping 
(avoiding “long training” without getting better the 
error); 

- the training process reaches the maximum number 
of iterations; 

- the maximum training time is reached. 

6. We test the trained ANN using testing patterns, which 
differ from training ones. First, the set of testing pat-
terns consists of equidistant interlaying patterns (with 
respect to training ones) over the state space. The tes-
ting patterns are obtained using the numerical model 
as well. 
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During testing, two values are highlighted. First, the 
percentage error at each testing pattern is computed. 
Second, the number of training patterns exhibiting 
a higher percentage error than the desired tolerance 
(so called high error patterns) is stored. 

7. The best ANN is selected according to the lowest 
number of high-error patterns. If every ANN has no 
high-error pattern, the best ANN is selected according 
to the lowest testing error. 

8. If there is no need to increase the number of hidden 
neurons (step 3), and if the algorithm does not run for 
the first time, the current ANN is trained by LM. 

9. The number of high error patterns is computed. 

10. All the points, which exhibit a higher error than the 
desired tolerance, are incorporated into the set of the 
training patterns. If the high error patterns occur in 
more runs of the algorithm, this step can cause dupli-
cating the patterns in the training set. The duplicated 
patterns have to be deleted. An index of the refine-
ment (see the next step) has to be changed. 

11. The surroundings of each added training pattern are 
sampled with a half-length step compared to the step 
in the previous refinement in the surroundings of 
a pattern. The length of the sampling step is derived 
from the refinement index of a pattern. 

If the testing error exceeds the maximum allowed 
error on a pattern, the pattern is incorporated into the 
training patterns (step 10), and the refinement index is 
increased by one. Each state parameter in the surroun-
dings of the pattern is sampled with the step given by 

v2e
r

ikk =  , (2) 

where kei denotes the original equidistant sampling 
step, i denotes the direction in the state space and rv 
signs the refinement index of an added pattern. 

In order to build new additional testing input pat-
terns, the refined state parameters (in the surrondings 
of a pattern) are combined the same way as the ori-
ginal patterns at the beginning. If the refining is per-
formed arround two or more neighbouring patterns, 
some testing patterns could be duplicated. These 
patterns have to be removed. 

12. The target response for each new testing pattern in the 
file of patterns is found. All the new patterns, that are 
not included in the existing file of patterns, have to be 
computed by IE3D. 

13. The newly computed patterns have to be incorporated 
into the file of patterns. 

14. If the best neural model still exhibits an unacceptably 
high error, return to the step 2. 
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Fig. 1. The maximum error of the filter model at the frequency 

f = 1 GHz and the 2 % error level plane. 

The state variables lay in following intervals: 

• lL ∈ <6.0 mm, 14.0 mm>; 
• lC ∈ <3.0 mm, 11.0 mm>; 
• f ∈ <1.0 GHz, 3.0 GHz>. 

The initial (coarse) equidistant training set has contained 
125 patterns, and the initial equidistant testing set has 
included 729 patterns. The maximum desired error of the 
model has equaled to 2 %. The maximum error (in equi-
distant testing parameters) after the first iteration has been 
4.42 % (see Fig. 1). 

The time response of the training error during the par-
ticle swarm optimization (PSO) pre-training in the fourth 
refined iteration (the fourth iteration of the above algo-
rithm) is depicted in Fig. 2. The pre-training error reaches 
e = 0.027 after 100 iterations and gives 3 pre-trained ANN. 
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iteration [-]  
Fig. 2. The time response of the PSO pre-training in the 4th 

refining iteration. 

These three ANN were trained using LM algorithm (Fig. 
3). The best ANN reaches the training error e =1.3 ⋅ 10-5 
after 365 iterations. 
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Fig. 3. The time response of LM training in the 4th refining 

iteration. 

After 6 repetitions of the above algorithm, the filter model 
exhibits a sufficient precision eP < 2 % (Tab. 1). The co-
lumn Refining contains the number of the iteration, when 
the training (testing) patterns were refined. The numbers of 
training parameters and testing patterns are given in the 
columns NTR and NTST, respectively. The maximum percen-
tage error of the neural model is given in column eP, and 
the number of hidden neurons is show in the column NH. 
The last column concentrates the values of time consump-
tions for refining the patterns and re-training the ANN. 
 

refining NTR NTST eP NH t 

[-] [-] [-] [%] [-] [s] 

equidist. 125 729 4.4 13 26.0 

1 159 729 3.2 14 19.9 

2 188 782 4.5 14 53.4 

3 210 883 3.3 15 122.2 

4 211 883 2.2 16 38.1 

5 285 1010 3.6 16 180.0 

6 311 1505 1.5 18 62.3 

Tab. 1. Training parameters and results for the modeled planar 
filter. 

4. Filter Optimization 
A sufficiently accurate neural model can be used as 

a computationally efficient substitution of a numerical mo-
del in optimization. The optimization is asked to find an 
inductive segment length lL and a capacitive segment 
length lC so that the filter can meet the target values of the 
forward gain, which are given in Tab. 2. 
 

fi [GHz] 0.5 1.0 1.5 2.0 2.5 3.0 

s21i [dB] 0.0 0.0 -3.0 -7.3 -10.0 -10.6 

Tab. 2.  The target filter gain. 

The objective function is 
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where s21i denotes the target filter forward gain and s21iM is 
the response of the current model. Eqn. (2) is minimized by 
PSO with M = 20 particles and absorbing walls at the 
boundaries. Due to the random initial values of the induc-
tive segment length lL and the capacitive segment length lC, 
each training process is run five times, and the learning 
error is averaged. Therefore, the length of optimization is 
fixed (20 iterations). 

The convergence of the optimization, which exploits 
the feed-forward neural model of the planar filter, is depic-
ted in Fig. 4. There are three curves in the figure: the ob-
jective function time response of the best run (dotted line), 
the worst run (dashed line), and the average run (solid li-
ne). The best case, the worst one and the averaged one are 
sorted according to the objective function value after the 
last iteration. 

After 20 iterations, the average value of the objective 
function is e = 4.5 ⋅ 10-3. This values corresponds to the 
inductive segment length lL = 9.89 mm and the capacitive 
segment length lC = 6.85 mm. The optimal lengths of seg-
ments have been computed in 0.069 s of the CPU time. The 
values of the error e correspond to the mean squared error 
of target filter gain over frequencies above (Tab. 2, equ-
ation. 2). 

In order to compare the optimization results, the opti-
mization of the filter is repeated using Zeland IE3D to eva-
luate the objective function (Fig. 5). The obtained optimal 
lengths (when using the numerical model to evaluate the 
objective function) are lL = 9.71 mm, and wC = 6.91 mm. 
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Fig. 4. Convergence of the PSO optimization of the low-pass 

filter. Objective function evaluated using a neural model. 

Note that training and optimization methods were imple-
mented in MATLAB 6.1 on a regular PC equipped by the 
processor Athlon XP 2700+, by 512 MB of RAM, and by 
Windows XP. 
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Fig. 5. Convergence of the PSO optimization of the low-pass 

filter. Objective function evaluated using Zeland IE3D. 

The results of optimization and their verification are given 
in Tab. 3. The upper part of the table concentrates the opti-
mized lengths of inductive and capacitive segments. The 
gain of the optimized models, and the verified gain of both 
the neural model and the numerical one, are given in the 
bottom part of the table. 

Fig. 6 shows the frequency dependence of the for-
ward gain and the reflection coefficient of the filter desig-
ned by the optimization using the neural model. The fre-
quency characteristic was computed using Zeland IE3D. 

5. Conclusions 
The proposed algorithm trains the neural model of an 

EM structure automatically. The feed-forward neural mo-
del trained by the algorithm is the fast and sufficiently 
accurate approach to model low-pass planar filters. If the 
numerical model of the planar filter is replaced by the 
neural one in global optimization procedure, the CPU time 
demands decrease more than 32 thousand times. 
 

l L [mm]

l C [mm]
training
optimizing

model verif. model verif. target
0.5 GHz s 21 [dB] -0.12 -0.18 -0.18 -0.18 0.00
1.0 GHz s 21 [dB] -0.21 -0.20 -0.20 -0.20 0.00
1.5 GHz s 21 [dB] -3.00 -3.00 -2.97 -2.92 -3.00
2.0 GHz s 21 [dB] -7.26 -7.22 -7.22 -7.22 -7.30
2.5 GHz s 21 [dB] -9.77 -9.75 -9.78 -9.75 -10.00
3.0 GHz s 21 [dB] -10.55 -10.45 -10.48 -10.46 -10.50

Neural model Zeland IE3D
optimized 
variables

9.79 9.71

forward gain

6.85 6.91

time [s]
501.9 -
0.067 2194.0

 

Tab. 3. Optimization results and verification. 

 
Fig. 6. Frequency response of the reflection coefficient at the 

filter input s11, and the filter forward gain s21. The filter 
was designed using a neural network. The scattering pa-
rameters were computed using Zeland IE3D. 
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