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Abstract. Principal Component Analysis (PCA) is an im-
portant concept in statistical signal processing. In this 
paper, we evaluate an on-line algorithm for PCA, which we 
denote as the Exact Eigendecomposition (EE) algorithm. 
The algorithm is evaluated using Monte Carlo Simulations 
and compared with the PAST and RP algorithms. In addi-
tion, we investigate a normalization procedure of the eigen-
vectors for PAST and RP. The results show that EE has the 
best performance and that normalization improves the 
performance of PAST and RP algorithms, respectively. 
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1. Introduction 
Principal Component Analysis (PCA) is an important 

concept in statistical signal processing. PCA is used in va-
rious applications such as feature extraction (compression), 
signal estimation and detection. In blind signal separation, 
PCA may be used to prewhite (i.e. decorrelate) signals be-
fore Independent Component Analysis (ICA) is applied for 
finding the independent signal components. ICA algorithms 
are generally more efficient if the input data is white since 
the number of possible solutions to the problem decreases 
significantly. 

There are two different approaches to PCA. If the 
whole data set is available, analytical methods can be used 
to calculate the Principal Components (PC). On the other 
hand, if PCA is to be used in real time applications, then 
the PCs might have to be estimated on-line for each new 
sample. Algorithms that operate on the whole date set are 
generally denoted off-line algorithms, while the latter type 
is denoted on-line algorithms. 

Two on-line algorithms for PCA are the Projection 
Approximation Subspace Tracking (PAST) algorithm and 
the Rao-Principe (RP) algorithm. The first algorithm was 
proposed by Yang in [1]. Essentially, PAST finds the PCs 
by minimizing the linear PCA criterion [2], [3], [4] using a 
gradient-descent technique or any recursive least squares 

variant. In this paper, the well known Recursive Least Squ-
ares (RLS) algorithm [5] is used. The second algorithm, 
RP, was proposed by Rao and Principe in [6], [7]. RP esti-
mates the PCs by using update equations derived from the 
Rayleigh quotient, without the use of any external parame-
ter such as a step-size or forgetting factor. PAST, on the 
other hand, relies on a forgetting factor parameter to be 
tuned before it can be used. 

This paper investigates the effect of incorporating nor-
malization of the eigenvectors in the PAST and RP algo-
rithms. In addition, an on-line algorithm for PCA, denoted 
as the Exact Eigendecomposition (EE) algorithm, is pro-
posed. EE is based on direct estimation of the correlation 
matrix followed by calculation of the PCs using the EIG-
command in Matlab. The performance of these algorithms 
will be assessed for different configurations using Monte 
Carlo computer simulations in Matlab. 

The organization of the rest of the paper is as follows. 
In section 2, the different investigated algorithms for PCA 
are reviewed. The estimation of coefficients and normali-
zation procedure of the eigenvectors for the algorithms is 
outlined in section 3. The simulation results and perfor-
mance evaluations of the different algorithms are presented 
in section 4. Finally, section 5 concludes the paper. 

2. Principal Component Analysis 
On-line PCA can be viewed as a functional block 

where the input is a complex m-by-1 data vector x(n) at the 
nth time instant. At each time instant the outputs are estima-
ted eigenvectors and eigenvalues of the correlation matrix 
R of the data. These eigenvectors and eigenvalues are de-
noted PCs of the data. Note that in this paper it is assumed 
that the correlation matrix R of the data is time-invariant. 

2.1 The PAST Algorithm 
The PAST algorithm [1] minimizes an approximation 

of the linear PCA cost criterion, 

J(w(n)) = ∑ =

n

i 1
β n-1 || x(i) – w(n) x’(i) ||2  (1) 
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where x’(n) = wH(n-1)x(n), β is a scalar forgetting factor, 
w(n) is an m-by-1 coefficient vector and ||.|| denotes the 
vector norm. This approximate version of the cost criterion 
is quadratic and has the same form as the cost criterion of 
the RLS algorithm, with exception of the error signal (in-
side the vector norm) that is a vector instead of a scalar. 
Thus, the minimization may be performed by incorporating 
the new signal x’(n) in the RLS. The RLS will update the 
coefficient vector w(n) using x’(n) as the input signal and 
x(n) as the desired signal. When the algorithm has con-
verged, w(n) will contain the eigenvector corresponding to 
the largest eigenvalue of the correlation matrix R, i.e. the 
largest PC. The eigenvalue can be found directly by the 
RLS via a reformulation of the update equation for the 
inverse correlation matrix. The deflation technique is used 
for sequential estimation of the remaining PCs. 

2.2 The RP Algorithm 
The RP [6], [7] algorithm is derived from the 

Rayleigh quotient and uses the following rule for extraction 
of the first PC: 

w(n) = (w(n-1) + Rw(n-1) ) / (1+wH(n-1)Rw(n-1)). (2) 

In the implementation, terms Rw(n-1) and wH(n-1)Rw(n-1) 
are redefined as P(n-1) and Q(n-1) and updated indepen-
dently before calculating the new coefficient vector w(n). 
This is convenient since Q(n-1) will be an estimate of the 
largest eigenvalue. The update rules for P(n-1) and Q(n-1) 
may be rewritten so that the need for an explicit estimate of 
the correlation matrix R vanishes. No forgetting factor is 
incorporated in the estimation of P(n-1) and Q(n-1), never-
theless this could be useful in a time-varying environment. 
The remaining PCs are estimated by using the same defla-
tion technique as in the PAST algorithm. 

2.3 The EE Algorithm 
In this paper the EE algorithm is used and evaluated 

for PCA. In the EE algorithm, the PCs are found by directly 
computing the eigenvalues and eigenvectors of an estimate 
of the correlation matrix. The following update rule is pro-
posed to be used for EE: 

R(n) + βR(n-1) + x(n)xH(n) . (3) 

Here, β is a scalar forgetting factor. The correlation matrix 
is estimated by (1-β)R(n) and is used for calculating the 
eigenvectors and eigenvalues (i.e. the PCs) by calling the 
EIG-function in Matlab. A key difference between EE and 
the other algorithms is that EE uses direct estimation of the 
correlation matrix as the basis for calculating the PCs, 
while PAST and RP directly estimates the PCs without 
making a detour via the correlation matrix. 

3. Choice of Coefficients and 
Normalization 

The PAST and RP algorithms estimate the different 
PCs in an iterative way, where the largest PC is estimated 
first followed by a deflation step. After the deflation, the 
second largest PC is estimated followed by a new deflation 
step and so on. This procedure continues until all desired 
PCs are estimated, then the sample instant n is advanced by 
one and the procedure is repeated for the next data vector 
x(n). The deflation step is essentially a simple algebraic 
rule that removes the contribution of the latest estimated PC 
from the data vector. The most straight forward approach is 
to use the most current estimate of the eigenvector in this 
rule, but one could also choose to use the previous estimate. 
Which choice that is the best is not clear and is therefore 
investigated by Monte Carlo simulations in this paper. Both 
the PAST and RP algorithm are simulated in two 
configurations, using the old or the new estimate. 

Eigenvectors are by definition normalized so that wHw 
equals to 1. However, the formulation of the PAST and RP 
algorithms does not guarantee this condition. Depending on 
the application, the eigenvectors can be normalized after 
each iteration, every l iteration or when the coefficients 
have converged [7]. In this paper, it is proposed that both 
algorithms are adjusted so that the eigenvectors are nor-
malized between iterations. Normalization is not required 
for EE, since the EIG-function assures that the eigenvectors 
are normalized at all time. 

According to the previous discussion, there are now a 
total of four possible configurations of PAST and RP. First, 
the old or the new estimate may be used in the deflation 
rule. Second, normalization of the coefficient vectors is on 
or off. The different configurations are denoted as A, B, C 
or D: old weights and normalization off (A), old weights 
and normalization on (B), new weights and normalization 
off (C), new weights and normalization on (D). Two more 
configurations, denoted as E and F are also used. In these 
configurations, normalization is performed every 10th 
sample (E) and in the 10 last samples of a realization (F), 
respectively. In both E and F the new weights are used in 
the deflation step. The different configurations are summa-
rized in Table 1. 

The configuration letter (A, B, C, D, E, F) is added to 
the algorithm name in order to differentiate between them. 
Examples are PAST-A, PAST-B, …, RP-A, RP-B, etc. EE 
does not have these configurations and hence it is simply 
denoted as EE. The performance of PAST and RP is de-
pendent of the configuration and is investigated in the next 
section. 
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 New 
weights 

Old 
weights 

Normalization off C A 
Normalization every sample D B 
Normalization every 10th sample E - 
Normalization last 10 samples F  

Tab. 1. The six possible configurations for PAST and RP, res-
pectively. The configuration letter (A, B, C, D, E, F) is 
added to the algorithm name in order to differentiate bet-
ween them. Examples are PAST-A, PAST-B, … , RP-A, 
RP-B, etc. 

 
Fig. 1.  The signal model used in the simulations. 

4. Performance Evaluation 
In this section we evaluate the performance of the 

PAST-x, RP-x and EE algorithms by means of computer 
simulations that employ a Monte Carlo approach. Here, x 
denotes configuration A, B, C, D, E or F, respectively. In 
the simulations, a random White Gaussian Noise (WGN) 
signal with variance 1 is filtered by a first-order AR filter 
H(z) = 1/(1-0.9495z-1). The resulting filtered signal is then 
fed to a 15-tap delay line resulting in input data vectors 
x(n) of size 15-by-1, see Fig. 1. The five largest true eigen-
values of the correlation matrix R = E{x(n)xH(n)} are 
found to be 119, 17.8, 5.58, 2.65 and 1.55, respectively. 
The condition number or the eigenvalue spread of R is 451. 
The choice of the first-order AR filter was made so that it 
results in approximately the same eigenvalues used in [6]. 

The performance evaluation is set up so that each 
algorithm (PAST-x, RP-x and EE) is simulated for 10000 
Monte Carlo runs (i.e. realizations) consisting of 2000 

iterations (i.e. data samples). After the last iteration in each 
Monte Carlo run, the five largest estimated eigenvalues, λi, 
i = 1, .., 5, and the corresponding estimated eigenvectors, 
wi,est, i = 1, .., 5, are examined. An estimation error (the dif-
ference between the estimated eigenvalue and true eigenva-
lue, i.e. λi,est – λi) is calculated and saved. Also, the absolute 
value of the Directional Cosines (DC), di, between the true 
and estimated eigenvectors are calculated and saved. A va-
lue of +1 indicates perfect alignment of the estimated and 
true eigenvectors, while 0 indicates that the estimated and 
true eigenvector are orthogonal. The forgetting factor β is 
equal to 1 for all simulations of PAST and EE. 
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Fig. 2. Cumulative distribution functions for the 5th principal 

component for PAST and EE. The vertical line corres-
ponds to the true eigenvalue. 
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Fig. 3. Cumulative distribution functions for the 5th principal 

component for RP and EE. The vertical line corresponds 
to the true eigenvalue. 

The saved eigenvalue estimates and directional co-
sines may be evaluated by plotting the Cumulative Distri-
bution Function (CDF). The CDF for the eigenvalue esti-
mates for the 5th principal component is plotted in Fig. 2 
and 3 for configurations A-D for PAST and RP, respec-
tively. The CDF for EE and the true eigenvalue λ5 are also 
plotted in these figures. The figures show that PAST and 
RP have similar performance, that EE has the best perform-
ance and B and D modes perform better than A and C 
modes of the algorithms. 

A compilation of all results are shown in Figures 4 to 
23. The figures show performance results for all 13 algo-
rithms for the five largest PCs. Figures 4-8 show the Nor-
malized Magnitude Bias (NMB) for the eigenvalues, 
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Figures 9 to 13 the Coefficient of Variation (CV) of the 
eigenvalue estimates, Figures 14-18 the Average Magni-
tude Directional Cosine (AMDC) for the eigenvectors and 
Figures 19-23 the Variance of the Magnitude Directional 
Cosines (VMDC). All these performance measures are 
defined in detail in Table 2. 
 

Measure Definition 
Normalized Magnitude 
Bias (NMB) 

Mean{|λi,est-λi| / λi } 

Coefficient of Variation 
(CV) 

Std{ λi,est } / Mean{ λi,est } 

Average Magnitude DC 
(AMDC) 

Mean{|(wi
Hwi,est)/ 

(wi
Hwiwi,est

Hwi,est )|} 
Variance of Magnitude 
DC (VMDC) 

Var{|(wi
Hwi,est)/ 

(wi
Hwiwi,est

Hwi,est )|} 

Tab. 2.  Performance measures used in the evaluation. 

By analyzing the figures, the following observations can be 
made regarding the eigenvalue estimation (Fig. 4 to 13): 

• The B and D configurations of PAST and RP are the 
best since they have the lowest NMB and CV for most 
eigenvalues. 

• The EE has the best performance of all algorithms 
since it results in the lowest NMB and CV for most 
eigenvalues. 

• The PAST has slightly better performance than RP, 
see for example eigenvalues 4 and 5. 

Similar observations can be made for the eigenvector 
estimation (Fig. 14 to 23): 

• All algorithms perfectly estimate the first eigenvector 
since AMDC is equal to one and the VMDC is equal 
to zero for all algorithms. 

• The EE perfectly estimates the first five eigenvectors 
since the AMDC is equal to one and the VMDC is 
equal to zero. 

• The B and D configurations of PAST and RP are the 
best since AMDC is closest to one and the VMDC is 
the lowest for all eigenvectors. 

• The PAST has slightly better performance than RP, 
see for example eigenvectors 4 and 5. 

From these observations, the following can be concluded: 

• The B and D configurations of PAST and RP have 
similarly good performance. The A, C, E and F confi-
gurations all have worse performance and A is the 
worst. 

• When normalization is not used, the new weights 
must be used in the deflation step in order for the 
algorithm to be robust. 

• When normalization is used, the choice of the old or 
the new weights in the deflation step is not crucial. 
Both configurations result in similar performance. 

• Normalization is highly recommended since the algo-
rithms have better performance than if normalization 
is not used. 

• Finally, the EE algorithm has the best overall perfor-
mance and may therefore be used as a benchmark for 
comparing different PCA algorithms. 

5. Conclusions 
In this paper we proposed the on-line algorithm, deno-

ted as the Exact Eigendecomposition (EE), for PCA. In 
addition, we incorporated a normalization procedure of the 
eigenvectors in the PAST and RP algorithms, and investi-
gated the effect for different configurations. The perfor-
mance of the algorithms was compared using Monte Carlo 
simulations using several performance measures. Simula-
tion results clearly demonstrate that the algorithms operate 
more reliably when normalization is adopted. It is also 
shown that the EE algorithm provides the best performance 
and can be used as a benchmark for comparing PCA algo-
rithms. 
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Fig. 4. Normalized magnitude bias for eigenvalue 1 for the dif-

ferent algorithms. 
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Fig. 5. Normalized magnitude bias for eigenvalue 2 for the dif-

ferent algorithms. 
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Fig. 6. Normalized magnitude bias for eigenvalue 3 for the dif-

ferent algorithms. 
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Fig. 7. Normalized magnitude bias for eigenvalue 4 for the dif-

ferent algorithms. 
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Fig. 8. Normalized magnitude bias for eigenvalue 5 for the dif-

ferent algorithms. 
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Fig. 9. Coefficient of variation for eigenvalue 1 for the different 

algorithms. 
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Fig. 10. Coefficient of variation for eigenvalue 2 for the different 

algorithms. 
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Fig. 11. Coefficient of variation for eigenvalue 3 for the different 

algorithms. 
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Fig. 12. Coefficient of variation for eigenvalue 4 for the different 

algorithms. 
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Fig. 13. Coefficient of variation for eigenvalue 5 for the different 

algorithms. 
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Fig. 14. Average magnitude directional cosine for eigenvector 1 

for the different algorithms. 
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Fig. 15. Average magnitude directional cosine for eigenvector 2 

for the different algorithms. 
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Fig. 16. Average magnitude directional cosine for eigenvector 3 

for the different algorithms. 
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Fig. 17. Average magnitude directional cosine for eigenvector 4 

for the different algorithms. 
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Fig. 18. Average magnitude directional cosine for eigenvector 5 

for the different algorithms. 
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Fig. 19. Variance of magnitude directional cosine for eigenvector 

1 for the different algorithms. 
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Fig. 20. Variance of magnitude directional cosine for eigenvector 

2 for the different algorithms. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

EE    
PAST−B
PAST−D
PAST−E
PAST−F
PAST−C
PAST−A
RP−B  
RP−D  
RP−E  
RP−F  
RP−C  
RP−A  

PC #3

variance of magnitude directional cosine  
Fig. 21. Variance of magnitude directional cosine for eigenvector 

3 for the different algorithms. 
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Fig. 22. Variance of magnitude directional cosine for eigenvector 

4 for the different algorithms. 
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Fig. 23. Variance of magnitude directional cosine for eigenvector 

5 for the different algorithms. 
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