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Abstract. Nowadays, hand-held ultrasonic Doppler units 
are often used for noninvasive screening of atherosclerosis 
in arteries of the lower limbs. The mean velocity of blood 
flow in time and blood pressures are measured on several 
positions on each lower limb. This project presents soft-
ware that is able to analyze such data and classify it in real 
time into selected diagnostic classes. It is also capable of 
giving a notice of some errors encountered during meas-
uring. At the Department of Functional Diagnostics in the 
Regional Hospital of Liberec a database of several hun-
dreds signals was collected. In cooperation with the spe-
cialist, the signals were manually classified into four 
classes. Consequently selected signal features were ex-
tracted and used for training a distance and a Bayesian 
classifier. Another set of signals was used for evaluating 
and optimizing the parameters of the classifiers. This paper 
compares the results of the software with those provided by 
a human expert. They agreed in 89 % cases.  
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1. Introduction 
Atherosclerosis and illnesses of cardiovascular system 

are serious threat for modern population. Typical risk fac-
tors are smoking, diabetes mellitus, hypertension and lack 
of movement.  

Manifestation of these diseases in human extremities 
is called Peripheral Arterial Disease [1]. The illness has 
four stages: 1) Patient feels no subjective troubles. 2) Pa-
tient feels pain while moving. 3) Patient experiences pain 
while in rest. 4) Stage of tissue necrotization and gangrene. 
Especially the last phase of the disease is very dangerous 
for patient’s extremity and even life. The well timed diag-
nostic is very important. Lower limb arteries are afflicted 
more often than those in upper limbs.  

There are many methods, how to detect the obstruc-
tions within arteries. The first method is a simple physical 
examination of the limb; a medical doctor inspects the 

color and the temperature of the extremity. The disadvan-
tage of this is that the pathological changes are often de-
tectable only after the illness enters its final stages. 

Angiography or its modern equivalent CT angiogra-
phy is a very accurate method, but there is some danger 
connected with the invasiveness of these methods. The best 
noninvasive method appears to be ultrasonic duplex scan 
that is able to visualize the profile of the artery along with 
dynamic representation of blood flow within. 

The above mentioned methods require expensive 
equipment, so these examinations are used in clinical 
medicine, not in general practice surgery.  

For fast noninvasive screening of PAD in diabe-
tological and cardiological ambulances, the ultrasonic 
Doppler devices have been used for a long time. These 
measure average blood flow velocity along with distant 
blood pressures on several typical places on lower limb. 
From shapes of the waveforms (or the sound emitted by the 
device into headphones) the expert can detect PAD. These 
devices are notably cheaper than duplex scanners.  

The developed automatic recognition software to-
gether with a Doppler unit could help to identify the first 
phases of the disease and could help to further improve the 
well-timed diagnostics in general practice surgeries, be-
cause the traditional analysis could be partly subjective and 
depends on experience of the expert. 

2. Methods 
Before starting the research, we had to collect a large 

database of real medical data. In our case the data was 
acquired during the last few years in the Regional Hospital 
in Liberec. They had to be anonymized before they could 
be used in the research. 

The waveforms were measured by the hand-held ul-
trasonic unit Multi Dopplex II and sent to a PC for storing 
via RS232 interface. The device measures the mean ve-
locity of blood in artery within a short time period, a Dop-
pler velocity waveform, along with blood pressures in five 
standard locations on each leg, e.g. there are 10 waveforms 
from one patient per one examination. The standard 
positions examined are following: 1) artery femoralis, 2) a. 
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poplitea, 3) a. tibialis posterior, 4) a. tibialis anterior, and 
5) a. dorsalis pedis. (See Fig.1.) 

 
Fig.1. Standard examination positions (picture taken from 

utility software distributed along with Doppler Unit - 
Dopplex Reporter). 

Multi Dopplex II is a bi-directional device; the wave-
forms could be displayed as forward and backward flow 
(See Fig. 2.-4.) or as a difference of these two signals in 
combined waveforms. 

2.1 Classes 
For automatic classification, four classes were chosen, 

into which the signals will be classified. These classes 
reflect various degrees of artery occlusion but also describe 
some defects which can be considered by a specialist dur-
ing examination. [3]. 

Normal course – Signals acquired by examination of 
arteries without peripheral arterial disease (PAD) - Fig.2.  

Stenotic course – Signals measured in arteries with a 
stenotic diameter - Fig.3. 

Occlusion– Signals measured in arteries with a total 
arterial obstruction - Fig.4. 

Incorrect course – It may happen that during meas-
uring various errors occur. Four kinds of such errors are 
detected in measured data. 1) The amplification factor was 
set too high and the course is clipped. 2) The signal is 
under strong influence of near veins, the dicrotic notch 
usually present in the normal triphasic waveform is lost in 
the noise. 3) Measured forward and backward velocities 
are echoes of each other, after the calculation of the differ-
ence the combined signal is almost zero. 4) The signal was 
not measured at all. This could happen by wrong placing of 
the probe, but it could also mean the total obstruction of 
the artery. 

The expert of angiology classified a part of the avail-
able database manually into designed classes before train-
ing of the classifier. This prior knowledge is used in the 
training process and also in the testing phase, when expert's 
opinion is compared with results of the classifier. 

 
Fig.2. Directional signals acquired by examination of arteries 

without peripheral arterial disease (PAD)  

 
Fig.3. Directional signals measured in arteries with a stenotic 

diameter. 

 
Fig.4. Directional signals measured in arteries with a total 

arterial obstruction. 

2.2 Features 
During the design process, 18 features were con-

sidered as potentially useful for the classifier. These fea-
tures describe the quality of measured signals in time do-
main, frequency domain or have a special medical 
meaning.  

Obtaining of the absolute values of velocities could 
be difficult with a simple Doppler unit because the appli-
cation angle of the probe strongly influences the amplitude 
of measured data. The standard angle ranges from 45° to 
60°. 

The further listed features are often used by human 
experts ([2], [3], [5] and [6]):  

 
Fig.5. Doppler waveform description. 

The list of proposed features is following:  
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where L is the number of samples. 
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Brachial pressure index (BPI) – the ratio of the patient’s 
system blood pressure (measured on a. brachialis) and the 
distal pressure in the examined position on the lower limb. 

Pulsation index (PI) 

avgv
vv

PI minmax −=  (2) 

where vavg. is the average velocity during one pulse 
duration.  

Resistance index, Pourcelot index (RI) 
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Maximum velocity(vmax) – Max. velocity within a pulse. 

Minimum velocity (vmin) – Min. velocity within a pulse. 

Acceleration (A)  
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v
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Deceleration (D)  
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Velocity-time index (VTI) –  
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Artery resistance parameter (RP)  
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v
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A set of 8 frequency features – The standard duration of 
measuring at one position is 5 seconds using the 100 Hz 
sampling frequency. The spectrum is calculated from the 
entire signal via Fast Fourier Transform (FFT). The most 
of the energy in the spectra is concentrated up to one quar-
ter of sampling frequency. These spectral coefficients are 
multiplied by eight triangle windows with half overlap in 
order to get 8 frequency features F1 to F8. 

Before computing the features, the signal must be 
preprocessed. It was done by filtering it by a low pass 
filter. This filter suppresses high frequency noise, but 
keeps the shape of the waveform. 

The Sequential Forward Search (SFS) algorithm [8] 
was used to determine the most significant features. Its 
advantage consists in the fact that it utilizes the target 
classifier. The algorithm operates as follows:  

In the first step, it identifies the feature with the best 
score. In the n-th step, the set of previously selected n-1 
features is extended by adding that feature from the 
remaining ones which makes best classification with the n-
feature set. The algorithm is terminated if the score in the 
current step is lower than in the previous one or if the 

number of steps (and already selected features) reaches the 
limit we set. In this way we get the set of the K most 
informative features. 

2.3 Detection of Pulses 
All the above mentioned features are calculated 

automatically in a real time, without human intervention. 
Most of them require that a single pulse is extracted and its 
shape and size must be analyzed.  

The detection in time domain is quite complicated. 
With a growing stenosis in the artery the waveforms loose 
their shape and become non-pulsative. Also the presence of 
a vein signal (mostly in signals from a. femoralis, a. pop-
litea) complicates this task.  

Autocorrelation function is used for the detection of 
pulses in the signal. Maxima in the waveform are traced to 
detect the beginning and end of one pulse. Derivation is 
used for identifying waveform extremes. 

2.4 Classifiers 
Two basic types of classifiers were implemented 

during the design process: The minimal distance classifier 
and the Bayesian classifier. Other suitable classifier types 
can be found in [4].  

The minimal distance classifier (MDC) represents 
each class by its best etalon (that sample with the minimum 
distance to the others). The etalon is described by a K-di-
mensional feature vector. Our classifier uses the Maha-
lonobis metrics: 

)()(),( 1 yxΣyxyx −⋅⋅′−= −d  (8) 

where Σ is covariance matrix of features within each class. 

The Bayesian classifier (BC) represents each class Ci 
by a Gaussian probability density function (pdf) in the K-
dimensional feature space. Its two parameters are means 
and variances. Since the classes have different occurrence 
rates, also the class prior probabilities are taken into 
account. The pdf is defined as follows: 
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2.5 Within-Class Clustering 
For better modeling of feature vectors’ distributions 

in the K-dimensional space, it is useful to split data in each 
class into clusters and represent each of them by a separate 
etalon or a separate pdf. 

In our case, the clusters are identified via the well 
known K-Means algorithm in combination with the Linde-
Buzo-Gray algorithm (LBG) [7].  

During the training phase, each diagnostic class is 
represented by one or more clusters, where each one is 
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described by its parameters, i.e. mean vectors, covariance 
matrixes and occurrence counts.   

In the testing phase, the minimal distance classifier 
assigns a measured data represented by the feature vector 
to the nearest etalon and decides to which class the un-
known data belong. The Bayesian classifier assigns the 
class whose posterior probability is the highest one. The 
errors of incorrect course are detected before the classifi-
cation stage. If the signal is identified as incorrectly meas-
ured, the classification is denied. 

In order to train the classifiers and to make extensive 
tests a large database of real signals was prepared by an 
expert. He classified the data from 900 examinations 
manually. These were measured at 10 standard positions (5 
on each leg), i.e. there were 9,000 sample waveforms 
available. Approximately 15 % of all these signals were 
found incorrect. (The reason was mostly setting of the 
amplification too high on a. femoralis, so that the signal 
was clipped). From the correctly measured ones, 47 % 
were assigned to the class Normal, 32 % to the class Steno-
sis, and the rest 6 % into the class Occlusion. In the ex-
periments, data from 720 randomly chosen examinations 
were used for training the classifier; the remaining data (of 
180 subjects) were left for testing. In each individual test, 
the result of the classifier was compared to the expert's 
decision. This was done for all test data and then the 
recognition score was calculated as a ratio of correctly 
assigned to all available testing samples. The scores were 
calculated for each measuring position and later averaged 
over all positions. To make the results more significant, the 
random database splitting into the training and testing part 
was repeated 5 times and the final scores were calculated 
as the means from the 5 tests. In other words, all the scores 
mentioned in the following section are averaged results 
from 9000 individual classifications (180 subjects x 10 
positions x 5 repetitions). 

3. Experimental Part 

3.1 SFS Algorithm 
The results from the SFS algorithm are illustrated in 

Fig.6. and Tab.1. It can be observed that the best classifi-
cation is obtained with 6 features, while adding more ones 
yields a smaller and then even larger degradation of the 
performance. The SFS algorithm identified the following 
best 6 features: BPI, deceleration, resistance index (Pour-
celot), velocity-time index and second and third frequency 
feature. As most of the energy of waveform spectra is cen-
tered in low frequencies, the higher frequency features did 
not bring any additional improvement. 

If we compare these 6 most informative features with 
those used by the human experts in vascular labs, we can 
see that the PI feature often used by experts was not se-
lected by the SFS algorithm. This may be caused by the 
fact that the average velocity in (2) can be influenced by 

less accurately detected borders of the pulse when com-
pared with a manual measurement. 
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Fig.6. Recognition score as a function of the number of 

classification features measured by the SFS algorithm. 
 

# of Features
Recognition 

score[%] Feature added 

1 81.75 VTI 

2 87.50 BPI 

3 88.78 F2 

4 89.08 RI 

5 89.18 D 

6 89.19 F3 

7 88.88 A 

8 88.64 F1 

9 88.39 Energy 

Tab.1.  Detailed results from the SFS algorithm’s first 9 steps. 
The scores and added features are shown. 

3.2 Testing of the Classifiers 
In Tab.2. we show the comparison of the results from 

the two classifiers and their various settings. The scores are 
based on correct decisions that include a) classification into 
a correct diagnostic class and b) correctly detected meas-
urement error. It is evident that the best results were 
achieved by the Bayesian classifier with multi-modal pdfs 
and prior probabilities. The best score was 89 %, i.e. the 
classifier and the expert agreed in 89 % of cases.  

In the medicine, the results are often indicated as sen-
sitivity and specificity rates. The sensitivity is defined as 

NegativesFalsePositivesTrue
PositivesTrue

ySensitivit
+

= , (10) 

the specificity is defined as: 

PositivesFalseNegativesTrue
NegativesTrue

ySpecificit
+

= . (11) 

Because the rates are applicable for binary classifiers 
only, we had to identify as positive such waveforms that 
contained pathological attributes (classes “Stenosis” and 
“Occlusion”). The detection of measurement errors is not 
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implicated in these values. Human expert’s opinion acts 
here as the golden standard.  
 

Classifier Setting Score 
[%] 

MDC Mahalonobis – 1 cluster 81.98 

MDC Mahalonobis – More clusters 83.65 

BC 1-modal pdf without prior probability 80.17 

BC 1-modal pdf with prior probability 84.46 

BC Multi-modal pdf without prior prob. 86.96 

BC Multi-modal pdf with prior probability 89.19 

Tab.2.  Recognition scores for different classifier types and settings. 
 
Class

. Method Sensitivity 
[%] 

Specificity 
[%] 

MDC Mahal. – 1 cluster 87.83 81.93 

MDC Mahal. – More clusters 90.95 85.77 

BC 1-modal pdf without p.p. 93.05 75.38 

BC 1-modal pdf with p.p 90.23 78.14 

BC Multi-modal pdf without p.p. 90.15 87.90 

BC Multi-modal pdf with p.p. 87.73 90.54 

Tab.3.  Sensitivity and specificity for different classifier types.

4. Discussion and Conclusions 
The strictest view on the performance evaluation is 

given by the recognition rate of the classifier that has to 
decide between 4 classes. In our experiments, the best 
results were achieved by using the multi-modal BC with 
prior probability. The 89 % agreement can be considered 
as quite high if we realize that the boundaries between the 
classes can be questionable in some cases, even for a hu-
man expert. Evaluation of the classifier by means of the 
sensitivity and specificity rates is little bit different. Here, 
the classifier is forced to accept only two classes. The 
specificity of the MDC and the one-modal BC is lower, 
since the classifier often confuses class “Normal” (Nega-
tive) to “Stenosis” or “Occlusion” (Positive). 

We have found that one of the most critical issues is 
the peak detection, description and measurement. Skilled 
experts can do it easily but for a fully automated system it 
is still a problem. We believe that the influence of vein 
signal could be partly suppressed by a properly designed 
high pass filter. This signal has rate of 15 to 20 pulses per 
minute and appears as a slowly changing trend in the data.  

A further extension of the feature set could be also 
useful, especially by adding features that could be calcu-
lated even when the waveform is non-pulsative or distorted 
in some way. Recently, the frequency attributes fulfill this 
role. It also seems useful to extend the number of classes 
for more precise classification of signals. The class Steno-
sis could be split into two subclasses: mild and severe 
Stenosis.  

At the conclusion we can say that the implemented 
classifiers are well suited for data provided by Multi Dop-
plex II. This non-expensive unit is often used in practice 
and with the developed software even a non-specialist 
could apply it for early screening of the PAD. The results 
achieved with the best automatic classifier lead to 89 % 
agreement with a skilled expert’s opinion. 
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