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Abstract. This paper considers the application of the 
linear constraints and RLS inverse QR decomposition in 
adaptive arrays based on constant modulus criterion. The 
computational procedures of adaptive algorithms are pre-
sented. Linearly constrained least squares adaptive arrays, 
constant modulus adaptive arrays and linearly constrained 
constant modulus adaptive arrays are compared via simu-
lation. It is demonstrated, that a constant phase shift in the 
array output signal, caused by desired signal orientation 
and array weights, is compensated in a simple way in line-
arly constrained constant modulus adaptive arrays. 

Keywords 
Adaptive array, constant modulus criterion, RLS, 
inverse QR decomposition, linear constraints. 

1. Introduction 
Today antenna arrays [1–5] are widely used as re-

ceiving and transmitting antennas in wireless communica-
tion systems [6], because they have a number of useful 
properties such as non-mechanical scanning, the increasing 
of the desired signal to thermal noise ratio (SNR) and the 
ability to increase the desired signal to interference ratio 
(SIR). Arrays with the latter property are called Adaptive 
Arrays (AA). AA automatically create dips in the direc-
tional pattern (DP) in the directions of interference sources 
and keep the required gain in the direction of a desired 
signal source, if the directions do not coincide. It means 
that AA are a space filter and their DP is an amplitude-
angle response, which is changed in accordance with the 
angle distribution of the signal and interference sources. 

In wireless communication systems, arrays with small 
numbers of antennas N are usually used. In this case, not 
only simple adaptive algorithms with linear computational 
complexity O(N), but the computationally complex algo-
rithms with quadratic complexity O(N2), can be readily 
implemented in modern Digital Signal Processors (DSP) 
chips [7], [8], and can be used in AA. 

Most adaptive filters usually require a reference sig-
nal. If no reference is provided, the linearly constrained 
adaptive algorithms can be used [9]. These algorithms, 
however, are sensitive to interferences coherent with the 
desired signal [10]. The interference example is a multipath 
propagation of the desired signal. 

Other adaptive filtering algorithms without a refer-
ence signal are Constant Modulus (CM) criterion ones 
[11]. These algorithms are widely used in blind channel 
equalisers and less in AA [12]. 

Should there occur a few CM signals, due to multi-
path, for example, the adaptive filter may capture interfer-
ence and suppress the desired signal [13]. The steering of 
the main lobe of DP of the AA in the direction of the de-
sired signal source by means of initial values of weights 
may be inefficient because the array weights are changed 
during adaptation. 

It was demonstrated in [14] that if the direction of the 
desired signal source is known, the application of linear 
constraints to CM adaptive algorithm allows AA to operate 
efficiently, if coherent interferences are received. In this 
case, the constraints keep the main lobe of DP in the direc-
tion of the desired signal source during adaptation.  

The algorithm [14] has the complexity O(N) and is 
based on gradient descent search strategy. It is known that 
such algorithms have a slower convergence and larger 
residual errors compared to Recursive Least Squares (RLS) 
algorithms with O(N2) complexity [15].  

Besides, the cost function in the CM criterion is not a 
quadratic one. As a result, the gradient algorithms often 
follow local solutions of the adaptive filtering problem. 

2. Problem Formulation and Solution 
This paper considers the application of linearly-con-

strained RLS algorithms based on inverse QR decomposi-
tion (IQRD) in CM criterion AA. 

CM criterion adaptive algorithms are used for the 
processing of signals with constant modulus envelope. An 
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example is Quadrature Phase Shift Keying (QPSK) modu-
lated signals, which are used in digital data transmitting. 
Any of the QPSK modulated data symbols ai have the 
property constsaaa iii === * , where the superscript ∗  

means complex conjugation. The value of s is known in the 
receiver. CM criterion is formulated as  
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and the adaptive CM algorithms are denoted as СМ(p,q). 
Here E[ ] is averaging operation, y(k)=hH

N(k-1)xN(k) is the 
array output signal, Fig. 1, hN(k)=[h1(k),…,hn(k),…, hN(k)]T  
is the weights vector, xN(k)=[x1(k),…, xn(k),…, xN(k)]T  is a 
vector of space-time sampled signals, k is the discrete time 
(sample number), the superscripts H and T denote Hermi-
tian transpose and transposition of a vector or a matrix. 
Vectors and matrices are denoted by bold lowercase and 
uppercase characters, respectively; the character N in sub-
scripts indicates vector (N) or square matrix (N×N) dimen-
sions. 
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Fig. 1. Adaptive array: RF is radiofrequency amplifier, DC is 

down converter. 

CM criterion (1) is nonlinear. Based on [16], it is shown in 
[17, 18], that for q=2, equation (1) can be converted to 
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where (1-0.4/N)≤λ<1 is the forgetting factor and 
zN(k) = xN(k) xH

N(k) hN(k-1) |xH
N(k) hN(k-1)|p-2. That is, cost 

function (2) is quadratic in the space of weights hN(k). 

If p=2, then zN(k) = xN(k) xH
N(k) hN(k-1). In this case 

zN(k) calculation requires minimum arithmetic operations 
(2N multiplications and N additions). Here, the transient 
response of the adaptive algorithm is also minimal, because 
zN(k) has the smaller memory. 

The above assumption allows the use of any of the 
RLS algorithms with quadratic complexity O(N2) as a 
CM(2,2) algorithm to minimize cost function (2). In [18] 
the RLS based on Matrix Inversion Lemma (MIL) was 

used. In [19] it is shown that such a RLS algorithm in CM 
AA can be unstable. The multichannel RLS algorithms 
[15] on the IQRD base are used in [19] as alternative 
solutions. 

3. Linearly-Constrained CM(2,2) RLS 
In this section the joint use of a multichannel linearly-

constrained RLS algorithm and IQRD algorithms in 
CM(2,2) is considered. 

The objective of the linearly-constrained least square 
filtering is to minimize the energy of the errors 
s2 - hH

N(k-1) zN(k), i.e. to minimize the cost function (2) 
under the constraint: 

JN
H
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Here, CNJ and fJ are matrix and vector of J linear 
constraints. The solution of the problem is the vector of 
adaptive filter weights [15]: 
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Matrix CNJ  is created as shown below. The flat wave 
s(t) is received by AA from the direction θ, see Fig. 1. In 
linear AA the distance between antennas is d0. It is usually 
chosen as a half of the wave length λ0 of the carrier fre-
quency f0, i.e. d0=0.5 λ0=0.5v/f0, where v the velocity of 
electromagnetic waves in free space, which equals to the 
velocity of light.  

The delay of the signal in the n-th antenna relative to 
the number 1 reference antenna is defined as  
τn=d0(n-1)sin(θ)/v, and the phase is defined as  
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Based on these relationships, the columns of the 
matrix CNJ  are defined as  
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Equation (3) means that F(θj)=cH
N(θj)hN(k)=fj=|fj|eiϕ(j), 

i.e. DP F(θj) of AA in the direction θj equals to the j-th 
element of the constraint vector fj. Since we are interested 
in receiving only one desired signal from the direction θ, 
the constraint matrix becomes a vector cN(θ) and the vector 
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of constraints becomes a scalar f. In this case the linearly-
constrained RLS algorithm [15] for AA, see Fig. 1, is 
simplified as below. 
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To compute Kalman gain gN(k), a stable procedure 
based on IQRD of CM(2,2) RLS [15], [19] can be used. 
The computations with square root Givens rotations are 
presented below. 
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Another procedure of IQRD Kalman gain 
computation by means of square root free Givens rotations 
is presented as well. 
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4. Algorithm Complexity 
Linearly-constrained algorithms with different proce-

dures of the computation of vector gN(k) are mathemati-
cally identical to each other and the only difference is the 
computational complexity. If floating point arithmetic is 
used, and the AA have the same parameters and process 
the same signals, then the algorithms compute the same 
output signal and the same weights of AA. These output 
parameters differ by the computational errors only because 
each algorithm uses its own sequence of computations with 
its own number of arithmetic operations.  

The estimation of the computational complexity of the 
above linearly-constrained algorithm (excluding Kalman 
gain calculation) is 12N+1 multiplications, 10N+5 addi-
tions and 1 division. The computation of the vector 
cN(cH

NcN)-1 is omitted in the estimation. The computation 
does not depend on the iteration number k and similarly to 
initialisation, it can be done in advance. 

The complexity of Kalman gain computation by 
means of square root IQRD includes N square roots due to 
the computation of the variable bN(k) during N steps 
i=1,…,N at each k-th iteration of the adaptive filtering 
algorithm. The computations also include 3N2+7N 
multiplications, 1.5N2+2.5N additions and N+1 divisions. 
The complexity of Kalman gain computation by means of 
square root-free IQRD equals 2.5N2+7N  multiplications, 
1.5N2+2.5N  additions and N divisions.  

As a comparison, the complexity of the Kalman gain 
computations by means of RLS based on MIL [15], see 
below, equals 4N2+2N  multiplications, 3N2+N+1  
additions and 1 division. 
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The complexity of Kalman gain computation by 
means of IQRD based on Householder transform [15], see 
below, equals 4N2+3N+3 multiplications, 3N2+N+2 
additions, 1 square root and 2 divisions. 
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The parameter 22 01.0 zσδ ≥  is used for initial regulariza-
tion of )(kNR  [20]. Here 2

zσ  is a variance of z(k) in vector 
zN(k). 

Thus, the total complexity of the considered linearly-
constrained CM(2,2) RLS algorithm depends on a proce-
dure of vector gN(k) computation. The use of the procedure 
depends on the computing recourses and the stability of the 
procedure in given operational conditions. 

In order to compare the algorithm’s complexity, we 
have to present square roots and divisions in terms of mul-
tiplications and additions. In most of DSP, the operations 
are not supported by hardware and they are implemented in 
software by means of table and analytical methods.  

For example, in applied libraries of “Multicore” DSP 
[8] the initial values of square roots and divisions are ac-
cumulated in a table and improved iteratively by means of 
Newton-Raphson method [21]. Square root requires 13 
multiplications and 3 additions. Division requires 7 multi-
plications and 3 additions.  

The full computational complexity of the considered 
algorithms in terms of multiplications (MUL) and additions 
(ADD) is presented in Fig. 2 and Fig. 3 for N=2,…,32. 
Here, the above complexities of square roots and divisions 
are used.  

Relative increase of the complexity to the same algo-
rithms without constraints [19] is presented in Fig. 4 and 

Fig. 5. As we can see, the contribution of constraints in the 
total complexity decreases when N is increased. 
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Fig. 2. Linearly-constrained adaptive array complexity: 

multiplications. 
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Fig. 3. Linearly-constrained adaptive array complexity: 

additions. 
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Fig. 4. Relative complexity of linearly-constrained adaptive 

array: multiplications. 
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Fig. 5. Relative complexity of linearly-constrained adaptive 

array: additions. 

The curves in Fig. 2 – Fig.5 are denoted as follows: curve 1 
belongs to linearly-constrained array with square root 
Givens IQRD Kalman gain calculation, curve 2 belongs to 
linearly-constrained array with square root free Givens 
IQRD Kalman gain calculation, curve 3 belongs to line-
arly-constrained array with MIL Kalman gain calculation 
and curve 4 belongs to linearly-constrained array with 
Householder transform Kalman gain calculation. 

If N=8, the linearly-constrained algorithm with square 
root free IQRD Kalman gain calculation requires about 
KT=2680 instructions of DSP 1892BM3T (“Multicore-12”, 
MC-12) whose clock frequency is 100 MHz. The DSP has 
Single Instruction Single Data architecture. It executes 
about 100⋅106/KT≈37.5⋅103 algorithm iterations per second. 
If the iterations occur at double data rate, the AA can be 
used for QPSK-4 modulation in a communication system 
with a data rate of about 2⋅37.5⋅103/2=37.5 kbit/s. If DSP 
1892BM2T (“Multicore-24”, MC-24) with Single Instruc-
tion Multiple Data architecture is used the data rate is ap-
proximately doubled. A new DSP МСF-0428 (“Multi-
Force”) of the family, whose computational power is 33 
times higher that of DSP MC-12, allows to build AA for 
data rate up to 33⋅37.5⋅103=1.24 Mbit/s. If the linear con-
straints are not used then the AA supports QPSK-4 data 
receiving at 45 kbit/s (MC-12), at 90 kbit/s (MC-24) and 
1.5 Mbit/s (МСF-0428). 

5. Simulation 
The efficiency of the considered algorithms is demon-

strated via simulation, which was conducted in base-band 
in accordance with Fig. 1. The desired signal was QPSK-4 
with |ai|=1. The desired signal direction was θs=0°, and two 
interferences were placed at o21

1
=Jθ  and o38

2
−=Jθ  direc-

tions. Correlated interference J1 was a copy of the desired 
signal delayed by half of an information symbol. The inter-
ference level was 3 dB lower than the desired signal. Inter-
ference J2 was simulated by white noise, the level of which 

was 20 dB higher than the desired signal. SNR in channel 
was -30 dB. Algorithm parameters were selected as N=8, 
δ2=0.01 and λ=0.9999. All computations were conducted in 
floating point arithmetic. To provide the mentioned delay 
of correlated interference, the information symbol was 
sampled twice per duration. The samples corresponded to 
algorithm iterations k. The number of iterations was 
K=15⋅104. In the simulation the Kalman gains were calcu-
lated by means of square root-free Givens rotation IQRD. 
Three algorithms were considered, a linearly constrained 
RLS algorithm, a CM(2,2) RLS algorithm, and a linearly 
constrained CM(2,2) RLS algorithm. 

A linearly-constrained RLS algorithm differs from a 
linearly-constrained CM(2,2) RLS algorithm in the fol-
lowing way: vector zN is substituted by xN and 
αN(k) = -hH

N(k-1) xN(k). CM(2,2) RLS [19] was initialized 
in two ways as hN(0) = [N -1,0T

N-1]T and hN(0) = N -1iN, 
where iN  is the unity vector. As the DP of antennas was 
assumed to be omnidirectional, all signals were received by 
antenna 1 at the beginning of the adaptation in the first 
case. In the second case the direction of the main beam of 
DP coincided with the desired signal direction θs=0° and 
all signals were received by all antennas. In the linearly-
constrained CM(2,2) RLS algorithm the weight vector 
hN(0) was qN(0) = N -1iN, because f = 1. 

The simulation results, Fig. 6 – Fig. 9, demonstrate 
the property of a linearly-constrained CM(2,2) RLS algo-
rithm comparing to linearly-constrained RLS and CM(2,2) 
RLS algorithms. In the figures the DP of an array with 
main beam direction θs=0° is shown in grey and AA DP in 
steady-state is shown in black. 
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Fig. 6. Simulations results: linearly-constrained RLS AA. 

Fig. 6 demonstrates that a linearly-constrained RLS algo-
rithm provides the constraint f = 1 in the direction θs=0° 
and suppresses uncorrelated interference in the direction 

o38
2

−=Jθ . The suppressing of correlated interference in 
the direction o21

1
=Jθ  is insufficient (about 3 dB). The 

final DP is destroyed and signal constellation at AA output 
is destroyed as well, see Fig. 10. 
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Fig. 7. Simulations results: CM(2,2) RLS AA initialized as 

[ ]TT
NN N 1

1,)0( −
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Fig. 8. Simulations results: CM(2,2) RLS AA initialized as 

NN N ih 1)0( −= . 
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Fig. 9. Simulations results: linearly-constrained CM(2,2) RLS 

AA. 

 
Fig. 10. Constellation: linearly-constrained RLS AA. 

CM(2,2) RLS algorithm, Fig. 7, suppresses both 
interferences. During adaptation it acquires the main lobe 
of DP in direction θs=0°, i.e. the direction of the CM signal 
with maximal power. However the constellation at AA 
output has a fix phase shift (Fig. 11) 
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. 

The phase shift leads to wrong detection of 
information symbols and has to be removed. The removing 
is usually done by an additional phase-locked loop [11]. 

 
Fig. 11. Constellation: CM(2,2) RLS AA initialized as 

[ ]TT
NN N 1

1,)0( −
−= 0h . 

The CM(2,2) RLS algorithm, Fig. 8, due to a different 
initialization has DP with the main lobe in the direction 
θs=0° in the beginning of adaptation. However, during 
adaptation the algorithm captures correlated interference. 
As a result, the main lobe of DP is redirected towards the 
interference. To provide the condition |ai|=1 at AA output 
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the gain of DP is increased by 3 dB in the direction of 
coherent interference. Constellation at AA output is also 

rotated as [ ]
[ ])(Re

)(Im

1

1

1
J

J
J F

F
arctg

θ
θ

ϕ =  , Fig. 12. 

 

Fig. 12. Constellation: CM(2,2) RLS AA initialized as 

NN N ih 1)0( −= . 

If one was to use linear constraints in CM(2,2) RLS algo-
rithm, it is possible to compensate the above mentioned 
phase shift in a simple way. It can be done if the constraint 
f is real-valued, i.e. F(θs) = hH

N cN(θs) = |fs|. Simulation 
demonstrates that if the desired signal direction θs is 
known, the linear constraint f = |fs| ensures the required 
orientation of the DP main lobe and the correct orientation 
of the AA output constellation which coincides with that of 
the transmitted data alphabet, Fig. 13, at each iteration. 

 
Fig. 13. Constellation: linearly-constrained CM(2,2) RLS AA. 

DP at Fig. 7 and Fig. 9 are about the same because the 
norms of a weights vector ρN(K) = ||hN(K)||2 are also about 
the same. Weight vector for Fig. 7 is hN(K) = [0.0461 + 
i 0.0858, 0.0532 + i 0.0878, 0.1129 + i 0.1042, 0.1103 + 
i 0.1030, 0.0614 + i 0.1437, 0.0577 + i 0.1423, 0.0686 + 
i 0.0798, 0.0639 + i 0.0717]T and ρN(K) = 0.3670. Weight 
vector for Fig. 9 is hN(K) = [0.0966 + i 0.0115, 0.1025 + i 

0.0069, 0.1503 - i 0.0327, 0.1477 – i 0.0311, 0.1529 + i 
0.0323, 0.1498 + i 0.0346, 0.1048 – i 0.0102, 0.0955 - i 
0.0114]T and ρN(K) = 0.3672. 

This similar simulation was conducted for the differ-
ent interference combinations. A linearly constrained algo-
rithm provides a DP dip in the direction of coherent inter-
ference about -3 dB, and about -64 dB in the direction of 
white noise interference.  

A CM(2,2) RLS algorithm initialized as  
hN(0) = [N -1,0T

N-1]T and a linearly-constrained CM(2,2) 
RLS algorithm provide about -68…-76 dB of DP dip in 
coherent interference direction and -100…-105 dB of dip 
in white noise interference direction.  

A CM(2,2) RLS algorithm, initialized as  
hN(0) = N -1iN, provides about the same interference sup-
pression. In cases where the algorithm captures coherent 
interference, the main lobe of DP is reoriented in the direc-
tion of the interference, the gain of the lobe is increased 
and the desired signal is suppressed. A DP dip in the de-
sired signal direction is about -70 dB. 

6. Conclusion 
Thus, the paper considers the joint application of 

constant modulus and least squares criteria in linearly 
constrained AA. The simulation demonstrates the 
efficiency of the technology in AA receiving a QPSK-4 
modulated signals. If the direction of the desired signal 
source is known, the application of a simple linear 
constraint to CM(2,2) RLS [19] allows to efficiently 
suppress coherent and white noise interferences, prevents 
the capture of coherent interferences and compensates 
constant phase shift in AA output signals. The achieved 
properties come at the price of some additional complexity 
in the algorithm, which drops as the number of AA 
antennas increases. Further development of the approach is 
presently conducted in the direction of multimodulus signal 
processing.  
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