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Abstract. Statistical description of quantization process is 
common in the theory of quantization. For the case of 
nonsubtractive dither theoretical analyses of the dithered 
quantizer have been confronted with experimental results. 
As a quantization system one-chip microcomputer with the 
analog-to-digital converter on a chip has been used. 
Generally valid criteria for dithered system performance 
have been practically applied for Gaussian dither. Inter-
action of natural noise present in the signal with an added 
Gaussian noise of several different disperses and influence 
of differential nonlinearity of the converter has been 
observed. 
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1. Problem Description and 
Notification 
Striving for ever higher precisions in measurement 

technology naturally leads to methods, which can shift the 
resolution limit of the quantizer usually represented by the 
analog-to-digital converter (ADC) bellow the lowest sig-
nificant bit (LSB). Dither is a random noise added to a 
signal prior to its (re)quantization in order to control the 
statistical properties of the quantization error [1]. There is 
also a possibility of addition of the deterministic signal for 
similar purpose in [2] called deterministic dither. But the 
statistical theory of quantization better suits for stochastic 
type of the added signal. Then two dither types are distin-
guished. The term subtractive dither (SD) is used for the 
case, when the dither is subsequently subtracted from the 
output signal after quantization. Unfortunately SD is diffi-
cult to use in many practical systems because the dither 
signal must be available at both ends of the channel and 
furthermore, any digital processing of the dithered signal 
would necessitate processing of dither prior to subtraction 
[1]. Nonsubtractive dither (ND) is the second dither type 
and is not subtracted from the output. As shown in [1], ND 
in contrast with SD cannot render the total error statisti- 

cally independent of the input neither it can make tempo-
rally separated values of the total error statistically inde-
pendent of one another. These could be critical drawback 
for digital audio or video applications. In measurement 
applications the output square error is usually of interest. 

1.1 Notifications 
Schematic of used nonsubtractive dithered system is 

shown in Fig.1. The quantization system input is denoted 

dsw +=  (1) 

where s is measured value and d is added noise. If there is 
null dither, the output of the ADC is 

( )sQ=β . (2) 

According to the Fig.1 Q(.) means static transfer charac-
teristic of the quantizer. The error function Qe determines 
behavior of error e (error if null dither is applied) 

( ) ( )sQssQe e=−= . (3) 

For general ND the quantizer output is 
( )wQv =  (4) 

and the error after quantization is 
( ) ( ) ddsQsdsQ e ++=−+=ε . (5) 
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Fig. 1. The nonsubtractive dithered system with averaged 

output. 

The total error ξ will be evaluated for static input values s 
(therefore v=v|s, o=o|s) and for averaged quantizer output 
denoted o 

( ) ssossvH −=−=ξ  (6) 

where H(.) is low passed filter implemented (in this case) 
through averaging 
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1.2 Ouantizer 
In the paper mid-tread quantizer [1] is considered 

(Fig.2). When the input is confined in no-overload region 
the transfer characteristic can be analytically expressed by 
equation 

( ) q
q
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and the corresponding error characteristic is 

( ) ( )
q

qw
qqwwQwQe

2
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−=−=  (9) 

where the „floor“ operator ⎣ ⎦ returns the greatest integer 
less than or equal to its argument and 〈 〉 means the frac-
tional part, e.g. 〈a〉 = a - ⎣a⎦  [3].  
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Fig. 2. Characteristic of mid-tread quantizer or of an ideal ADC. 

According to theorem of equivalent nonlinearity for system 
with ND [4] if the conditional mean value is of interest, the 
quantizer transfer (static) characteristic could be replaced 
by its convolution with probability density function (PDF) 
of dither. Therefore ND could be used for correction of 
nonlinerity errors – i.e. of quantization error or differential 
nonlinearity (DNL). 

1.3 Statistical Description 
For statistical description of a general signal x the 

PDF fx(x) will be used, e.g. for the dither it is fd(d). The 
characteristic function (CF) is the Fourier transformation of 
PDF in the form [5], [6] 

( ) ( )∫
∞

∞−

= dxexfu jux
xxΦ . (10) 

Then the back transformation should be 

( ) ( )∫
∞

∞−

−= dueuxf jux
xx Φ

2
1
π

. (11) 

Profitably the Fourier transform of multiplied signals could 
be used because it leads to a simple relation 

( ) ( ) ( ) ( )uuxfxf 2121 ΦΦ↔∗ . (12) 

It is possible to evaluate moments of the signal from CF 
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2. Theory of Nonsubtractive Dither 

2.1 Area Sampling 
Fig.3 is a sketch of a typical quantizer input and out-

put. The input PDF fw(w) is smooth, and the output PDF 
fv(v) is discrete, because each input value is rounded to-
wards the nearest allowable discrete level. The probability 
of each discrete output level equals to the probability of the 
input signal occurring within the associated quantum band. 

kq
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f (w)=w|s f (w-s)d|s

(k+1)q

f (v)v|s

s

q/2

(k+2)q(k-1)q(k-2)q(k-3)q

ε=kq-s

 
Fig. 3. Area sampling - in the output only integer (k is integer) 

multiples of quantization step q are possible. 

The PDF’s of input and output signals are related to each 
other through a special type of sampling called area sam-
pling [7]. Cutting up the input PDF into strips as in Fig.3., 
the area of each strip is compressed into an impulse in the 
center of the strip when forming the output PDF. The out-
put PDF is a string of Dirac delta functions, whose areas 
correspond to areas under the input PDF within the bounds 
of each quantum box.[7]. 

In [3] or [1] the process is described mathematically if 
ND is used. If the input value is in the range of  
{(k - 0.5)q ≤ w ≤ (k + 0.5)q}, the output is v=s+kq. For 
generalization of this result for dither signal the following 
set is defined 
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which is set of dither values d for constant signal s  leading 
to the same output v. The probability, that there is such a 
dither is 

( ) ( ) ( )∫∫
+

+−

−==

kqq
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2
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For given s the error value could achieve only discrete 
levels ε=kq–s [1]. Therefore the conditional PDF (CPDF) 
of error is series of delta functions separated by 
quantization step q and weighted by proper probability of 
occurrence 
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It could be shown that [6] 
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then 

( ) ( ) ( )[ ] ( )[ ]∑
∞

−∞=
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k

sdqs skqfff εδεεεε * . (19) 

Occurrence of PDF of uniform noise fq in convolution 
indicates possible modeling of quantization trough addition 
of such a uniform noise, because PDF of sum of independ-
ent noises could be evaluated through convolution of 
PDF’s of summands. This convolution is in (19) multiplied 
by uniform impulse train, in other words the result of con-
volution is conventionally sampled. 

2.2 Conditional Mean Error 
Taking the transform of (19) one can get the CF of 

error CPDF. The desired moment - mean value - could be 
found employing (13). According to (12) the image of 
convolution in PDF domain is multiplication in CF do-
main. Then product of Φq and Φd|s should occur in the final 
CF. For CF of a uniform noise it could be written 
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The summation from (19) should be found also in CF do-
main. Similarly to discrete Fourier transform for sampling 
in time, the CF should be periodic and infinite sum of rep-
licas (the member ejψs in (20) is caused by shifting of dither 
PDF with measured signal s) and from [6] it is 
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what suggest possibility of aliasing-like effect. The 
variable 

q
π2Ψ =  (22) 

can be thought of as “quantization radian frequency”. 
Mean value is the first moment and with respect to (13) [1] 
it is 
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3. Quantitative Criteria 
In measurement applications, the output squared error 

is usually of interest to describe the performance of the 
overall system. Written in the conditional form, it is 

[ ] [ ] [ ]sEsVARsE ξξξ 22 +=  (24) 

where the variance is known as 

[ ] [ ]( )[ ]ssEEsVAR 2ξξξ −= . (25) 

The mean value could be introduced also for sampled data 
in following form 
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Notations 

[ ]sE 22 ξμ = , (27) 

[ ]sVARs ξσ ξ =2 , (28) 

[ ] [ ]sEsEm s εξξ ==  (29) 

help to simply suggest dependency of observed final pa-
rameters from parameters of measurement system. Error is 
sum of the disperse of error and squared mean error  

222
ss mξξσμ += .  

For ND if averaged 

( ) ( ) ( )dsdsd sms
N

Ns σσσσμ εε ,,1,, 222 +=  (30) 

where N is the number of values to be averaged. The total 
error depends on the type of dither signal, on its disperse 
(variance), on the number of averaged values N and on the 
measured signal s (dependency from s could be easy re-
placed by dependency from e). Because occurrence of 
measured value s in general measurement is unknown, it is 
better to eliminate s [8] by the expression  
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( )∫
−

=
2

2

22
a

1
q

q

dss
q

μμ . (31) 

According to [9] this mean-square error could be evaluated 
from 
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where ( ) ( )NdNd ,lim, 2
a

2
a σμσμ ∞→=∞  and it could be 

shown that (* means complex complement) 
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3.1 Gaussian Noise 
Gaussian noise - in the role of dither - exhibits the 

following PDF [3] 
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and its CF is 
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The conditional mean value (23) for this type of dither is 
then 
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For big enough standard deviation of the noise σd≥0.3 
it is sufficient to keep only the first term in the series 
expansion. The mean-square error is then [9] 
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For given N it achieves its optimal value for disperse 

( ) ( )[ ]12ln
2opt, −= NqNd π

σ . (38) 

4. Experiments 

4.1 Workplace 
The block diagram of the realized workplace is de-

picted in Fig 4. A standard microcontroller with a 10-bit 
ADC has been selected as an object of experiment. Input 
voltage was adjusted by a precise data acquisition (DAQ) 
card while dither was added in PC software. Averaged 

output numbers were sent from microcontroller via serial 
link RS232 to the PC and then displayed. 

(mean of N samples)
Quantization

Microcomputer

PC

DAQ
card

Memory
(Data File)

(ADC)
Averaging

+
d

s o

v

w
o

s+d LabView RS232

d s o

 
Fig. 4. Block scheme of the workplace. 

In the analyses the quantization and other errors on the PC 
side has been neglected. 

4.2 Experimental Results 
In experiments average of N=16 10-bit values were 

calculated in the microcomputer for each single input (i.e. 
quantizer output) 

( ) ∑
=

==
16

116
1

i
ivvHo  (39) 

which was then sent to the output of the microcomputer as 
a 14-bit number. Resolution of DAQ card in the input 
range of ADC (0÷5V) is 14-bit. Therefore quantization 
errors in other part of channel has been 16-times smaller 
than in the tested quantizer and so neglected. Measure-
ments were held in M static quantizer input levels repeated 
P times for every level. 

 

 

 

 

 

 

 
Fig. 5. Conditional mean error of measurement evaluated for the 

range of 10 quantizer steps – approximately 16 points in 
each of them – as a mean value from P=20 processes. (+ 
– experiment, o – theory, gray line – simulation) 

In the Fig.5 conditional mean value of the error as a 
function of measured s is depicted. The + marker signifies 
this value estimated from measurements as 
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Fig. 6. Mean-square error averaged for quantization step μa
2 

evaluated for different disperses of added Gaussian 
noise. (+ – experiment, o – theory, gray line – 
simulation). 

Parameters of the first experiment (Fig.5, 6.) were P=20 
(averaged) outputs in each of M=160 input levels with 
uniform step approximately 1/16 LSB of the tested ADC – 
said approximately because LSB of the ADC is not a pre-
cise integer multiple of LSB of this DAQ card. The grey 
line is based on simulation results, i.e. no integral non-
linearity (INL) and no noise is present. The o markers 
represent theoretical values according to (29) resp. (36) 
where 20 summands were used. The offset between the 
simulated or theoretical values and the measurement results 
is caused by offset or INL of the ADC. Local INL changes 
should have been seen from changing shift (phase-like) of 
the measured curve towards the theoretical waveform. The 
reason for difference in shape of waveforms is natural 
noise present in real signal while simulating with no noise. 

Measurements similar to Fig.5 were acquired after 
adding Gaussian noise to the signal s. For each disperse of 
added noise σd the mean-square error as the mean value for 
quantization step (31) was estimated as 

( )∑ ∑
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where offset means average offset of measurement outputs 
towards ideal outputs, i.e. mean error caused by other 
imperfections of ADC than quantization had to be 
subtracted. The results are compared to theoretical ones in 
Fig.6. The + markers and solid line belongs to μa

2 from 
measurements, the grey line is obtained also with (41) but 
from simulations, the o marks theoretical values according 
to (32) with (37). 

In the next case the aim was to show influence of 
INL. Therefore M=160 levels were spread through a wider 
input range of 80 quantizer steps. The conditional mean 
value of the error mξ|s as a function of measured value s is 
shown in Fig.7. For every quantization step they are now 
approximately two input levels. The nonlinearity is 
apparent. 

 
Fig. 7. Conditional mean error of measurement evaluated for the 

range of 80 quantizer steps – approximately 2 points in 
one step – as a mean value from P=20 processes. (+ – 
experiment, o – theory, gray line – simulation). 

 
Fig. 8. Mean-squared error averaged for quantization step μa

2 
evaluated for different disperses of added Gaussian 
noise. (+ – experiment, o – theory, gray line – 
simulation). The added x-line responds to the reduced 
number of input levels to the first M=16. 

Fig.8 shows resulting theoretical, simulation and experi-
mental values of μa

2 similarly to the first case from Fig. 6. 
But in addition there is also included a line with x markers 
corresponding to the reduced number of levels M=16. 
These are the first 16 numbers from the second experiment 
thus covering shorter input range. The less the range the 
less influence of DNL is expected. This assumption is 
reflected in graphs in Fig.8. As it could be seen, the DNL 
shifted up the line of μa

2. 

4.3 Discussion 
The simulations showed proper theoretical description 

of considered performance parameters for ideal quantizer 
and signal behavior. In the experiments the natural noise 
present in signal shifted the curve of mean squared error 
averaged for a quantization step μa

2 in the way, that less 
dither disperse should be added to achieve minimal μa

2. 
According to (38) this optimal disperse is 
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σd,
2
opt=0.0862 LSB2. In experimental results the optimum is 

shifted to lower disperse values. But if PDF of the natural 
noise is known it could be easily involved into the dither. 
From other point of view disperse of common Gaussian 
natural noise could be estimated from the shift of 
theoretical optimum for disperse of added noise. 

In real measurements other error sources than quanti-
zation influence result. DNL should negatively change μa

2. 
Its impact rises for wider ranges on the input side of ADC. 
Shift of μa

2 to upper values is apparent for wider input 
range (s). Similarly for rising disperse of dither the DNL 
changes come into the role. Further investigations of inter-
actions between dither and DNL seem to be challenging. It 
is possible to suppress local DNL through dithering. But 
special correction methods are available for suppression of 
nonlinearities and dither could be optimized for correction 
of quantization error. 
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