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Abstract. In this paper the ray-launching method is de-
veloped and used for the modeling of a rotational spec-
trometer. Since the electrical size of the spectrometer is 
several thousands times longer compared to the wave-
length, the presented approach is much suitable for the 
analysis of such huge devices than the classical numerical 
exact methods such as the fast integral methods. 

The accuracy of the developed approach is verified on an 
analysis of a spectrometer component – a lens. Firstly, the 
lens is analyzed in CST Microwave Studio, and secondly, 
by the developed ray-launching method. Comparisons 
show that the accuracy of the developed approach is good. 
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1. Introduction 
The rotational spectroscopy investigates the absorp-

tion and the emission of electromagnetic radiation in the 
microwave frequency range. The absorption and the emis-
sion are caused by molecules, and correspond to the chan-
ge of the rotational quantum number of molecules. The 
rotational spectroscopy can be practically used for the sub-
stance in the gas phase only where the rotational motion of 
molecules is quantized. The corresponding frequencies of 
the absorption range from tens to hundreds of gigahertzs. 

The block scheme of the rotational spectrometer is 
depicted in Fig. 1 [1]. A synthesizer whose frequency is 
controlled by a rubidium standard generates a microwave 
signal. The signal is amplified, multiplied (in order to reach 
a desired frequency), transmitted by an antenna and focu-
sed by a lens. A linearly polarized wave propagates 
through a polarization filter to a sample cell. The sample 
cell, which length is in the order of decimeters or meters, is 
filled by an analyzed gas of low pressure. After passing the 
sample cell, the wave is reflected back by a roof mirror, 
which changes the wave polarization. The reflected wave is 
deflected by the polarization grid and received by a receive 
antenna. Then, the received signal is detected and proces-
sed by a computer. Thus, the rotational (absorption) line 

spectrum of an analyzed gas is obtained. 

 
Fig. 1. Block diagram of a rotational spectrometer. 

Typical electrical size of the rotational spectrometer is in 
order of thousands of wavelength. Evidently, it is an elec-
trically large object, and therefore, conventional numerical 
methods can not be used for its analysis due to their insuf-
ficient efficiency. And that is the reason for applying geo-
metrical optics, and ray tracing methods for its analysis. 

There are direct and indirect methods of ray tracing. 
Direct methods, e.g. image theory, are based on finding all 
the relevant propagation paths from a source point to a 
desired observation point. In case of indirect methods (so 
called “ray launching”), a number of rays is launched from 
a source point in arbitrary directions, and traced to hit the 
receiver or reach a certain maximum attenuation. In order 
to ensure that all the relevant propagation paths are found, 
a large number of rays have to be transmitted. However, 
the decision whether a ray hits a receiver or not is difficult. 
There are two decision methods: the discrete ray tubes [3] 
or the reception spheres [4], and the discrete rays. Since the 
method of the discrete ray tubes does not work properly at 
curved boundaries, the modification of the receptions 
spheres is used for the analysis of the spectrometer. 

When using the method of the receptions spheres, the 
determination of the diameter of spheres is difficult be-
cause important propagation paths may not be considered 
(the diameter is too large), or several physically identical 
rays reach the receiver (the diameter is too small). In order 
to overcome this trouble, the ray density normalization 
(RDN) can be applied. Moreover, the original approach [5] 
does not take into account diffracted fields. 
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The paper is organized as follows. Section 2 summa-
rizes basic principles of the geometrical optics and the 
uniform theory of diffraction used for the ray-tracing 
methods. In section 3, the ray density normalization is 
extended in order to take diffracted fields into account. In 
addition, the power-field approach is proposed for the 
evaluation of the field of launched rays. Section 4 is fo-
cused on the verification of the developed ray launching 
approach, and on modeling the rotational spectrometer. 
Finally, Section 5 concludes the paper. 

2. Geometrical Optics 
Geometrical optics (GO) is an approximate high-fre-

quency method for determining wave propagation for 
incident, reflected and refracted fields. Since GO uses ray 
concepts, GO is often referred as the ray optics [6]. In 
order to determine the propagation of diffraction waves, 
the uniform geometrical theory of diffraction (UTD) is 
used. 

In the conventional GO, the transport of energy be-
tween arbitrary two points in an isotropic lossless medium 
is accomplished using the conservation of the energy flux 
in a tube of rays. Within this tube of rays, the power of 
energy flux has to remain constant [6]: 

SdAdAS =00  (1) 

where S0, S denote the radiation densities and dA0, dA are 
the cross-sectional areas of the tube at two different loca-
tions separated by a distance s. For TEM waves propagat-
ing in a medium characterized by the wave impedance Zw, 
S and the electric field intensity E are related as follows 
[6]: 
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Taking into account (1) and (2), we can write for an 
astigmatic tube of rays (Fig. 2) [6]: 
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where SAF is a spreading attenuation factor, ρ1,2 are radii 
of curvature of the wave front at s=0. The right-hand side 
of (3) is called as a spreading attenuation factor in the 
literature. 

The equation (3) relates the magnitude of the electric 
field at s to a reference magnitude at s=0 only. In order to 
obtain an expression for the actual complex vector field, 
the Luneburg-Kline high-frequency expansion is adopted 
[6], and then 

0)( EE sjSAFes β−=  (4) 

where E0 is the electric field intensity at the reference point 
(s=0). If the transmitting antenna is modeled by a point 
source with a complex vector directional pattern CT and 

gain GT [9], the reference value of E0 at the distance rr 
from the antenna is given by [9]: 
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where PT denotes the input power of the transmitting 
antenna. The equation (5) is valid in the far field of the 
antenna only. 

Apparently, the right-hand side of (3) becomes infi-
nite for s = –ρ1 or s = –ρ2 (4), which means the approxi-
mation is no longer valid. The intersection of the rays at the 
lines 1-2 and 3-4 (Fig. 2) is called a caustic. When passing 
through a caustic in the direction of propagation, the sign 
of ρ + s changes and the correct phase shift of +π/2 is 
introduced naturally. The equation (4) is a valid high-
frequency approximation on both sides of the caustic, but 
the field near the caustic and at the caustic has to be found 
from separate considerations [7], [8]. Moreover, the 
equation (4) is valid if all the obstacles are large compared 
to the wavelength only. 

 
Fig. 2. Astigmatic tube of rays. 

2.1 Propagation Phenomenon 
In this part, the phenomena of the attenuation, re-

flection, transmission and diffraction of the electromag-
netic wave are treated in a way enabling an easy usage in 
conjunction with the ray-optical approach discussed above. 

2.1.1 Absorption 
If the electromagnetic wave propagates through the 

analyzed gases, the wave can be attenuated. The attenua-
tion causes an exponential decay of the field intensity with 
the geometrical optics length [6] 

0)( EE ses α−=  (6) 

where α is the attenuation coefficient, which is defined as 
a real part of the complex propagation constant [6] 

;/1 ωεσμεωβαγ jjj +=+=  (7) 

μ, ε and σ are permeability, permittivity and conductivity. 
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2.1.2 Reflection and Refraction 
of Electromagnetic Wave 

If a wave (a ray) impinges upon an interface, 
a reflected wave and a refracted one are formed according 
to Snell’s law and the local plane wave approximation. 

 
Fig. 3. Incident, reflected and refracted wave. 

For evaluation, the incident wave is decomposed into two 
orthogonal polarizations (parallel one and perpendicular 
one) which are treated separately (Fig. 3). Then, the total 
field is given by the vector sum of two components. 

If the incident wave Ei (ray) impinges upon a planar 
interface, the reflected wave Er at Q is described by [6] 

.)()( QQ ir ERE =  (8) 

Similarly, the refracted wave Et at the Q is described by [6] 
).()( QQ it ETE =  (9) 

The dyadic reflection coefficient R and the dyadic 
transmission coefficient T are given by [6] 
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where R||, R⊥ and T||, T⊥ are Fresnel’s reflection and trans-
mission coefficients for parallel and perpendicular polari-
zation [6]. Symbols (ki, ei

⊥, ei
||), (kr, er

⊥, er
||) and (kt, et

⊥, ei
||) 

are orthonormal bases generated by the direction of the 
incidence ki, the direction of the reflection kr and the di-
rection of the refraction kt (Fig. 3), respectively. 

The above formulas are valid only for a uniform plane 
wave impinging on an infinite smooth planar boundary. 
However, these formulas can be used even if dimensions of 
the interface are finite, but large compared to wavelength. 

If the interface is curved, the reflection and the 
transmission can be still treated by ray-optical methods if 
the radii of curvature of the surface are large enough. If 
this condition is fulfilled, the reflected wave Er at a dis-
tance s from the reflection point Q can be described by [6] 
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Similarly, the refracted wave Et at a distance s from the 
point of refraction Q is given by 
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with 
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In (15) and (17), ρ1
r, ρ2

r and ρ1
t, ρ2

t are principal radii of 
curvature of the reflected wave and the refracted one [9]. 
These radii depend on the principal radii of curvature of 
the incident wave and the interface. 

2.1.3 Diffraction of Electromagnetic Wave 
If a wave impinges upon an edge, the uniform theory 

of diffraction can be applied to calculate the diffracted 
field. According to that theory, the possible diffracted rays 
leave the edge in a cone of an internal half-angle lying on 
the far side of the plane normal to the edge (Fig. 4) [6], 
[10], [11]. The diffracted field can be described by [6], [10] 
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where SAFd is a spreading attenuation factor of the dif-
fracted field [6], s’ is the path length from the transmitter 
Tx to the diffraction point Qd, and s is the path length from 
the diffraction point Qd to the receiver Rx. The dyadic edge 
diffraction coefficient D is given by [6] 
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In (19), Ds and Dh are the diffraction coefficients for 
the soft polarization and the hard polarization1 [6]. Sym-
bols (s’, ϕ’, β’) and (s, ϕ, β) denote orthonormal bases 

                                                           
1 The terms soft polarization and hard polarization are 

not generally known. They should be therefore briefly 
explained here. 
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generated by the direction of the incidence s’ and the di-
rection of the diffraction s (Fig. 4), respectively. Finally, 
the vector t is tangential vector to the edge at a point Qd. 

 
Fig. 4. Diffraction by an edge. 

If a ray hits the edge, the edge becomes secondary source. 
All the rays radiating from the edge are traced as a usual 
ray. Since the strength of the diffracted ray is weak, the 2nd 
order diffraction and the higher-order one are neglected. 

The phrase “a ray hits the edge” draws that a ray hits 
a certain surface in the vicinity of the edge defined by the 
maximum distance dmax (Fig. 5) at a point Qd. In order to 
avoid phase errors, this distance should be as small as pos-
sible, but the number of rays should be sufficient enough to 
provide good scanning of the wedge. The maximum distan-
ce dmax should be therefore chosen about λ/15 as a compro-
mise of these claims. The diffracted rays start at a point Q’d 
which is a projection of the point Qd on the edge. 

 
Fig. 5. Vicinity of an edge. 

2.2 Field Intensity Calculation 
If a propagation path of a ray was found with m re-

flections, o refractions and p diffractions (according to the 
above section, p can be 0 or 1), then the field intensity of a 
single ray at the receiver can be evaluated by [11] 
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However, if ray-launching is applied, a large number of 
rays l reach the receiver on different propagation paths. 
Thus, the resulting field at the receiver is given by the 
vector sum of all the rays (22) 
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3. Ray Density Normalization 
and Calculation of the Field 
As discussed in the introduction, if the ray-launching 

with the reception spheres is applied, the determination of 
the diameters of spheres is difficult because important 
propagation paths may not be considered or several physi-
cally identical rays might be reached by the receiver. In 
order to overcome this trouble, the ray density normaliza-
tion can be used [5]. 

Each physical path is a priori presented by several 
multiple rays in this approach. The number of these rays is 
determined, and is used to normalize the contribution of 
each ray to the total field. The precondition of the ray den-
sity normalization is that a large number of rays from the 
transmitter have to be distributed homogeneously. 

3.1 Determining the Number of Multiple 
Rays 
For N discrete rays launched from the transmitter 

assuming a plane surface, the ray density at a distance r 
(an unfolded path length) is given by [5] 
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If reflections or refractions at curved boundary occur, the 
proportionality 1/r2 is not valid longer, because the rays 
can be focused or defocused. For the ray density at a dis-
tance s from the curved surface, the ray density after the 
reflection is given by [5] 
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Similarly, the ray density after the refraction can be 
expressed as 
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where nd
i denotes the incident ray density at a surface, nd

r 
and nd

t are the ray density after reflection and refraction at 
the distance s from the point of reflection and refraction, 
respectively. Next, ρ1

r, ρ2
r and ρ1

t, ρ2
t are the principal radii 

of curvature [9] of the reflected and refracted wave after 
reflection and refraction, respectively. The ray density 
before the first reflection or refraction is given by (24). 
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The total number of rays M reaching the receiver by 
the same propagation path is 

AnM d=  (27) 

where A is a “visible” area of a receiver. 
The above calculation of the number of rays reaching 

the receiver at the same propagation path was described in 
[5]. This calculation is valid only if rays are not obstructed, 
reflected or refracted. This calculation is not valid for the 
diffraction. Thus, we extend the theory of the ray density 
for diffracted rays. 

If the diffraction occurs, we have to take into account 
the original ray density, computed according to the rela-
tions (24) to (26), and further, we have also to take into 
account the fact that the incident wave excites diffracted 
rays. Let us denote the number of rays, which are launched 
from the point of diffraction Q‘d in a cone (Fig. 4, 5), by 
the symbol Nd. 

The original ray density computed according to the 
relations (24) to (26) has to be modified, because only 
those incident rays are considered which impinge on the 
edge and its vicinity defined by the distance dmax, and the 
diffracted rays are launched from the edge. Let’s call it as 
the ray density parallel to the edge and denote it nd

par. 
Taking the above facts into account, and considering the 
influence of the diffraction edge on the incident wave [6], 
principal radii of the wavefront, and assuming the plane 
surface, we obtain the following relation for the ray density 
parallel to the edge at a distance r (unfolded path length) 
from the point Q‘d 
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where nd
i denotes the incident ray density (24) to (26), ρc

 is 
a radius of curvature of the diffracted wave in the diffrac-
tion plane, n is a normal to the wedge, and ki is a propaga-
tion direction of the incident wave (Fig. 5). 

Obviously, an incident ray excites Nd diffracted rays 
which leave an edge in a cone. The ray density of these 
rays, lets’s call it as the ray density perpendicular to the 
edge and denote it nd

dper, depends on the number of dif-
fracted rays, the angle of the wedge 2nπ and the angle of 
the incident ray Θ. Taking the above facts into account and 
assuming the plane surface, we obtain the following rela-
tion for the ray density perpendicular to the edge at a dis-
tance r (unfolded path length) from the point Q‘d 

.
sin2 Θ

=
rn
Nn

d
dper
d π

 (29) 

The total ray density after the diffraction is evaluated as the 
product of both the ray densities (28) and (29) 
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If reflections or refractions at curved boundary occur, the 
equations (25) and (26) can be used with (30). 

The total number of rays Md (the rays started at the 
point of diffraction) reaching the receiver at the same 
propagation path is 

AnM d
d

d =  (31) 

where A is a “visible” area of a receiver. 
To be noticed, the number of rays M or Md is an inte-

ger and finite number. 

3.2 Field Calculation 
For the field calculation using ray density, two ap-

proaches can be used: the field trace and the power trace 
[5]. In this part, we introduce a power-field trace, which 
stands on the idea of a power trace; however, it is more 
general than the power trace [5]. 

3.2.1 Field Trace 
The field trace is a conventional approach in ray-

launching. A certain electric field is assigned to each ray, 
and rays are traced until they hit a receiver, or until their 
attenuation does not reach a desired level. 

If the ray density normalization is used, each single 
ray has to be normalized by the number of rays M which 
travel along the same physical path. The electric field in-
tensity of a single ray can be computed if the diffraction 
does not occur 
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If the diffraction occurs 
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The resulting field at the receiver is given by the vector 
sum of all the rays (32). The meaning of the symbols m, o , 
p is the same as in (22).  

3.2.2 Power Trace 
The basic idea of the power trace assumes that the 

total power radiated by the transmitting antenna is spread 
over all the rays, each ray keeps its portion of the power of 
wave, and attenuation may occur due to the propagation 
phenomena [5]. If a ray hits a receiver, its remaining power 
is transferred to the receiver. The effect of the free-space 
attenuation is included implicitly. Increasing the distance, 
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the number of rays, and consequently the smaller power 
reaches the receiver. 

The power trace in combination with the ray density 
normalization [5] allows to overcome one of the major 
disadvantages of GO and the field trace – their failure at 
caustics, where the predicted field approaches infinity [6]. 
However, the original approach is a bit ponderous for our 
application because the electric field distribution is the 
quantity of interest, and further, the original approach does 
not take the diffraction into account. Thus, we derive the 
approach called power-field trace, which stands on the idea 
of power trace, however, is more general and takes the 
diffraction into the account. 

3.2.3 Power-Field Trace 
The initial power of each ray is given by 

NGPP TTTt
2C=  (33) 

where N is the number of launched rays. If a ray hits a 
receiver with the aperture A, the ray is assumed to deliver 
its total energy (if no propagation loss occurs) to the re-
ceiver. Then, the following radiation density (the power of 
a ray spreads over a receiver aperture) is produced: 

.APS tA =  (34) 

The approximation is valid only for 

,AArt ≤  (35) 
where Art is the actual area of the ray tube. 

Since assembling all the rays, which reach the 
receiver, makes sense in physical terms for power trace 
only, let us sum up rays traveling along the same physical 
path. According to the equations (24) to (31), we have to 
sum up M, or Md rays. Then, the total power density at the 
receiver is 
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By substituting (33) and (36) into (2), we get 
22 2 TTTw NA

MGPZ CE = . (37) 

Since complex directivity pattern CT of the transmitting is 
of the same orientation as the intensity of the electric field 
(5), and the wavefront changes its phase along the 
propagation path, we can write 
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The equation (38) can be used for the evaluation of the 
electric field of the transmitting antenna, which is modeled 
by a point source with the complex vector directional 
pattern CT and gain GT , at the distance r. 

For the verification of the above considerations, let us 
assume that N rays are homogenously distributed between 
the transmitter and at distance r from the transmitter. The 

ray density can be computed according to (24). After that, 
the receiver aperture A at distance r is reached by M rays 
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By substituting (39) to (38), we get 
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which equals to (5) for r = rr. Thus, eqn. (38) is valid. 
The fraction [M/(NA)]1/2 in (38) stands for a spatial 

divergence factor SAF along the whole propagation path of 
a ray. In order to include reflection, refraction and diffrac-
tion phenomena, dyadic coefficients have to be added 
similarly as described in Section 2. 

Before formulating the field intensity of a single ray, 
the numerator and the denominator of (38) is multiplied by 
2π1/2r and r=rr , and the formula (38) can be rewritten 
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Taking into account the normalization by M rays, the dy-
adic coefficients R, T, D and the spreading divergence 
factor SAF, the field intensity of a single ray can be repre-
sented by the fraction [M/(NA)]1/2 for the whole propaga-
tion path, and can be evaluated according to the following 
relation if the diffraction does not occur 
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and if the diffraction occurs 
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Obviously, equations (42) are analogous to equations (32). 

The resulting field at the receiver is given by the 
vector sum of all rays 
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The described approach does not fail at caustics, be-
cause the number of rays M or Md is finite, and their maxi-
mum equals to the number of transmitted rays or their 
fraction. This is the most important advantage compared to 
the approach described in Section 3.2.1. 

4. Modeling Spectrometer 
So that the above-discussed ray-launching approach 

can become an efficient tool for modeling the spectrome-
ter, an intersection of a ray and an object (e.g., a spectro-
meter component) must be computed precisely analytically. 

Since the distribution of the electromagnetic field in a 
plane is required to be known, standalone reception sphe-
res cannot be used, because a large number of spheres are 
needed. Thus, a reception plane or block is used. 

The „reception plane” is a part of a plane which is di-
vided into small reception elements (rectangles). In order 
to decide whether an element of the reception plane was hit 
by a ray, an intersection of a ray with the plane is com-
puted only. In case of reception spheres, a large number of 
intersections with reception spheres have to be checked 
(computed). However, the reception plane fails if most rays 
are parallel to it. In such a case, a reception plane has to be 
appropriately packed by a block, and a reception block has 
to be used. Then, we have to compute whether at least one 
of brick’s walls is hit by a ray. If this is true, the ray is 
projected into the reception plane of the reception block, 
and the intersections of the projected ray with the elements 
of the reception plane are computed. Exploitation of the 
reception block is more time-consuming than the usage of 
the reception plane. On the other hand, the described ap-
proach is more general than the reception plane, and is less 
time consuming compared to the reception spheres. 

4.1 Analyzing Lens 
The proposed approach is verified by the analysis of 

a lens (a component of the spectrometer) which is excited 
by a half-wavelenght dipole placed at the focus of the lens. 
The operation frequency is 60 GHz (Fig. 6). The focal 
length of the lens is 200 mm, and its diameter is 200 mm. 
The structure is analyzed by CST Microwave Studio and 
by the proposed ray-launching approach. For the ray laun-
ching method, dipole is modeled by its directivity pattern. 

Results obtained both by the CST Microwave Studio 
and the ray-launching are depicted in Fig. 7. The distribu-
tion of the electric field intensity along the axis of the lens 
(the blue line in Fig. 6) depends on the distance from the 

dipole. The comparison of results shows that the accuracy 
of the proposed approach is very good. 

 
Fig. 6. Analyzed lens excited by a half-wavelength dipole. 

4.2 Analyzing Spectrometer 
The analyzed part of the spectrometer is depicted in 

Fig. 8. The distribution of the electrical field intensity is 
computed in the box bounded by the dashed lines only. The 
length of the box is L = 2.6 m and the width is W = 0.55 m. 

The spectrometer is analyzed at f = 118.75 GHz. The 
cell is of a cylindrical shape, and is made from glass. The 
length of the cell is 2.0 m, the diameter is 0.1 m, and the 
thickness of the wall of the sample cell is 0.005 m. 
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Fig. 7. Dependence of electric field intensity on the distance 

from the dipole. The lens is situated at d = 200 mm. Field 
intensity was computed by CST (blue line) and by ray-
launching (red line). 

Horn antennas are used in the spectrometer. The gain of the 
transmitting antenna is G = 20 dB and its directivity pattern 
is used during the analysis. The antenna is fed by the 
power 10 mW. The focal length of used lenses is 0.2 m and 
their diameter is 0.1 m. The lenses (hyperbolic surfaces) 
are made from Teflon with the relative permittivity 2.08. 

For the analysis, 8 640 000 rays are launched from the 
transmitting antenna. 

The result of the spectrometer analysis by the ray-
launching method, i.e. the distribution of the electric field 
intensity in the cell, is depicted in Fig. 9. The enlarged 
details of the field distribution in the vicinity of selected 
components of the spectrometer are depicted in Figs 10 to 
15. Fig. 9 illustrates the way how the radiated energy 
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Fig. 9. Distribution of the electric field intensity of the 

spectrometer. 

travels from the transmitting antenna through the spectro-
meter, is focused and defocused. 

 
Fig. 8. Analyzed spectrometer. 

The distribution of the electric field intensity in the vicinity 
of the lens of the transmitting antenna is depicted in Fig. 
10. The distribution of the intensity of the electric field 
along the black line, drawn in this picture, is depicted in 
Fig. 11. Obviously, a caustic point of the lens can be 
identified here, the standing wave ratio (SWR) in front of 
the lens is about 5 dB, and is negligible behind the lens. 

 
Fig. 10. Distribution of the electric field intensity in the vicinity 

of the lens at the transmitting antenna. 

Whereas the space between the transmitting antenna and 
the lens is in the near field region of the antenna, the lens 
and the space behind the antenna is in the far field region 
of the transmitting antenna. Thus, the evaluated field in 
front of the antenna is corrupted by an error, and the results 
in this region have to be considered as illustrative ones 
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only. However, the rest of results is “valid” according to 
the theory mentioned above. 
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Fig. 11. Distribution of the electric field intensity along the black 

line drawn in Fig. 10. 

The distribution of the electric field intensity in the vicinity 
of the lens of receiving antenna is depicted in Fig. 12. The 
distribution of the electric field intensity along the black 
line, drawn in this picture, is depicted in Fig. 13. 
Obviously, the energy is focused to the focal point of the 
lens. SWR is almost negligible in front of the lens (seen 
from the sample cell), and reaches about 5 dB in the lens. 

 
Fig. 12. Distribution of the electric field intensity in the vicinity 

of the lens at the receiving antenna (the figure is rotated). 

The distribution of electric field intensity in the vicinity of 
the reflector and at the reflector in the end of the sample 
cell is depicted in Fig. 14. The distribution of the intensity 
of the electric field along the black line, drawn in this 
picture, is depicted in Fig. 15. Obviously, a large fluc-

tuation of the field (nearly 10 dB) appears near the reflec-
tor. SWR in sample cell is up to 3 dB. 
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Fig. 13. Distribution of the electric field intensity along the black 

line drawn in Fig. 12. 

 
Fig. 14. Distribution of the electric field intensity in the vicinity 

of the reflector. 

5. Conclusion 
In this paper, the ray launching method with the ray 

density approach was extended to take the diffraction into 
account, and the power-field trace was proposed. The accu-
racy of the presented approach was verified by the analysis 
of a spectrometer component – a lens. The lens was ana-
lyzed in CST Microwave Studio first, and then, the analy-
sis was repeated by the developed ray-launching method. 
Comparisons prove good accuracy of presented approach. 

The developed method was used for modeling a rota-
tional spectrometer in order to obtain the distribution of the 
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electric field intensity. The results from this analysis can be 
used for the optimization of the spectrometer. 
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Fig. 15. Distribution of the electric field intensity along the black 

line drawn in Fig. 14. 
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