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Abstract. This paper deals with advanced methods for 
elimination of thermally generated charge in astronomical 
images, which were acquired by a Charged Coupled De-
vice (CCD) sensor. There exist a number of light images 
acquired by telescope, which were not corrected by dark 
frame. The reason is simple: the dark frame doesn’t exist, 
because it was not acquired. This situation may for in-
stance come when sufficient memory space is not available. 
Correction methods based on the modeling of the light and 
dark image in the wavelet domain will be discussed. As the 
model for the dark frame image and for the light image the 
generalized Laplacian was chosen. The model parameters 
were estimated using moment method, whereas an exten-
sive measurement on an astronomical camera was pro-
posed and done. This measurement simplifies estimation of 
the dark frame model parameters. Finally a set of astro-
nomical testing images was corrected and then the objec-
tive criteria for an image quality evaluation based on the 
aperture photometry were applied.  
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1. Introduction 
There exist many astronomical observatories on the 

world. These observatories produces huge amount of sci-
entific image data, which are investigated by several re-
searchers. Unfortunately, a large number of scientific 
images needs a sufficient storage memory space, even if 
they are suitably compressed. For instance, when the 
images of night sky acquired by CCD (Charge Coupled 
Device) sensor are considered then it is necessary to ac-
quire among others also a correction dark frame beside a 
light image. This image serves for the thermally generated 
charge elimination, which is made by subtraction of the 
dark frame from the light image. The thermally generated 
charge can be also eliminated by nonlinear median filter-
ing, but this method is not so satisfactory. The method 
described in this paper allows to correct the light image 
directly and among others saves a memory space. 

2. Image Data 
16 bits scientific astronomical images (fits and dat 

format) were chosen for the simulations. FITS (Flexible 
Image Transport System) is primarily designed to store 
scientific data sets. These scientific analyzed data has been 
taken during the work of the international (Czech-Spanish) 
experiment BOOTES (Burst Observer Optical Transient 
Exploring System). The BOOTES [1] has been in service 
since 1998 as the first Spanish robotic telescope for the sky 
observation.  

 
Fig. 1. The 1m11.01.dat image, exposure time = 300 sec, CCD 

temperature = 4.21 °C. 
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Fig. 2. The 1m11.01.dat image autocorrelation function. 

This system is one of three similar systems in fully opera-
tion in the world. The main aim of the project is an obser-
vation of the extragalactic objects and detection of a new 
optical transient (OT) of gamma ray burst (GRB) sources. 
An example of the light image is depicted in Fig. 1. An 
image behavior can be described using autocorrelation 
function. There is a typical autocorrelation function of the 
astronomical images in Fig. 2; the shape of this autocorre-
lation function is quite slim. This means that astronomical 
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images are noise similar. The z axis shift of the autocorre-
lation denotes the direct-current component. 

3. Discrete Wavelet Transform 
The following items will deal with several type of 

DWT. Firstly the algorithm proposed by Stefan Mallat [2], 
which is called Dyadic Decomposition, will be mentioned. 
Mallat’s nonredundant algorithm is based on the iterative 
filter bank. The consequent algorithm, e.g. Undecimated 
Wavelet Transform, is the redundant decomposition. The 
redundant decompositions are usually used for denoising, 
because of good efficiency. 

3.1 Dyadic Decomposition 
A dyadic decomposition was used as a special form of 

The Discrete Wavelet Transform in this work [3]. A dyadic 
decomposition allows non redundant decomposition of sig-
nal (in contrast to Continuous Wavelet Transform - CWT).  
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Fig. 3. The implementation of 2-D dyadic decomposition. 

There is a basic structure for dyadic decomposition in 
Fig. 3. Here Hi respectively Lo presents the impulse re-
sponse of a high pass, respectively low pass filter, 2↓ 
means down sample by factor 2. When the signal is filtered 
using the scheme in Fig. 3 then the four subbands are ob-
tained, e.g. diagonal details (HH) γDp+1(d), vertical details 
(HL) γDp+1(v), horizontal details (LH) γDp+1(h) and signal 
approximation (LL) γAp+1. It is good to note that γA0 pre-
sents the decomposed signal. 

Decomposition filters were estimated from the wave-
let Coiflet4. This wavelet gives satisfactory denoising re-
sults in the sense of MSE (Mean Square Error) [4]. The 
decomposition of the typical astronomical image can be 
seen in Fig. 4. 

3.2 Undecimated Wavelet Transform 
The decimated versions of wavelet transform are usu-

ally used. Unfortunately these types of the transform can 
produce unwanted artifacts during the reconstruction. 
Because of this, Undecimated Wavelet Transform (UWT) 
was developed, see [5]. The UWT belongs to redundant 
decompositions and it is a good tool for image denoising. 

 
Fig. 4. Coefficients magnitudes of a dyadic decomposition of 

the light image, LL1 – top left, HL1 – top right, LH1 – 
bottom left, HH1 – bottom right. 

4. Image Model 
4.1 Light Image Model 

Mallat as one of the first has observed that the DWT 
detail subbands have non-Gaussian statistics. Thus the 
detail subbands are characterized by a histogram, which is 
sharp peaked at zero with heavy tails. Mallat, Simoncelli 
[6] and others have modeled the detail bands histograms by 
generalized Laplacian PDF (Probability Density Function) 
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where s controls the width of the PDF and parameter p 
controls the shape. The Z(s,p) function normalizes 
exponential to the unit area. The Z(s,p) function is given by 
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where Γ(x) presents the gamma function 
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4.2 Dark Frame Model 
For the dark frame marginal PDF modeling the gener-

alized Laplacian PDF was also utilized 

( )
( , )

x

N
ep x

Z

α

β

α β

−

=  (4) 

where parameter α controls the shape of the PDF and 
parameter β controls the width.  

5. Bayesian Estimators 
The Bayesian statistics [7] has to be involved to one 

of the most powerful statistics methods. In comparison 
with the classical Fisher approach, the Bayesian approach 
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allows to subsume prior information to the problem 
solving. Since the Fisher approach utilizes only the 
observed data for the statistical problem solving, it is 
impossible to obtain useful results for a small number of 
data. The Bayesian approach provides useful results for a 
small set of obtained data because of the prior model 
usage. Two basic Bayesian estimators will be mentioned, 
Bayesian Least Square Error (BLSE) estimator, and 
Maximum a Posteriori (MAP) one. 

5.1 Bayesian Least Square Error (BLSE) 
Now the additive noise is assumed  

.y x n= +  (5) 

where x presents a clean signal, n stands for an additive 
noise and y is a noisy observation. It is generally known 
that the conditional mean of the posterior probability den-
sity function provides a least square estimation of the vari-
able X. So the BLSE estimator should be written 
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The denominator is the PDF of the noisy observation, 
computed via convolution of the signal and noise PDFs. 
The capital letters in PDF subscripts present variables in 
the wavelet domain. 

5.2 Maximum a Posteriori (MAP) 
So the additive noise is considered (5). The maximum 

a posteriori estimator is given by 

( ) ( ) ( )ˆ arg max N Xx
X Y p y x p x= − ⋅  (7) 

where pN presents the noise PDF, pX denotes the prior 
signal PDF. 

5.3 Model Parameters Estimation Using 
Moment Method 
The moment method, which is based on comparing of 

sample moments with theoretic moments, belongs to 
powerful parameters estimating methods. 

Firstly it is necessary to derive theoretic moments for 
the random variable Y = X + N (E[X] = 0, E[N] = 0) with 
several PDFs pX(X), pN(N) [8]. It can be shown that the 
second theoretic moment m2 of Y will be only the addition 
of several generalized Laplacian moments  
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The fourth theoretic moment m4 of Y is given by 
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In accordance with [9] and [10], so-called kurtosis κ will 
be used, which is given by following expression 

4
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where m2 and m4 denote the second and fourth theoretical 
moments. From the previous equations the following ex-
pressions can be derived 

2

1 5

3X
p p

p

κ

⎛ ⎞ ⎛ ⎞
Γ ⋅Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞
Γ ⎜ ⎟

⎝ ⎠

, (11) 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

4 4 2 2 2
2

2 2

6
X

m Y m N m N m Y m N

m Y m N
κ

− − ⋅ −
=

−
,(12) 

( ) ( )( )2 2

1

3
p

s m Y m N

p

⎛ ⎞
Γ⎜ ⎟
⎝ ⎠= −
⎛ ⎞

Γ⎜ ⎟
⎝ ⎠

 (13) 

where m2(N) and m4(N) denote the second and fourth 
theoretic moment of N.  

Equations (12) and (13) are still quite suboptimal, be-
cause the dark frame is not available and the moments 
m2(N) and m4(N) cannot be directly computed. Because of 
this, during the recent year, a set of dark frames has been 
acquired. For the dark frame acquiring, the astronomical 
camera SBIG ST-8 was used and image statistical analysis 
was done. The analysis has shown that the second and 
fourth sample moments are temperature dependent. Thence 
it follows that these dark frame moments in the wavelet 
domain should be found using the known moments tem-
perature dependency. Now it is quite simple to estimate 
shape parameter α using kurtosis 
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and β using the second moment 
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Practically all theoretical moments in equations (12), (13), 
(14) and (15) are replaced by the sample moments.  

An example of optimization curve for parameter p 
(equation (14)) is depicted in Fig. 5 and the algorithm im-
plementation can be seen in Fig. 6. 
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Fig. 5. Example of the optimization curve for parameter p, 

M2(N) = 7441, p = 0.67. 
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Fig. 6. The implementation of algorithm for parameters estima-

tion. 

5.4 Moments Temperature Dependency 
This section closely investigates a temperature de-

pendency especially of the second and fourth sample mo-
ment of the dark frame wavelet coefficients (dyadic de-
composition, wavelet coiflet 4). Information about this 
temperature dependency is considerably essential, because 
there is no any other simple way how to estimate dark 
frame model parameters. The problem of the noise model 
parameters is not usually occurred in the case of additive 
Gaussian noise in multimedia images, because there exist 
many simple methods for noise variance estimation. 

For the previous mentioned investigation of moments 
temperature dependency, the set of the dark frame images, 
which were acquired by the CCD camera SBIG ST-8 
(CCD chip size 510 x 710 pixels), was used. The set of the 
dark frames contains 100 images at certain temperatures  
(-5, 0, 5, 10, 15, 20 °C). Because of the CCD camera tem-
perature set accuracy, it is useless to choose finer tem-
perature step than approx. 3°C. The exposure time was 60 
seconds for all images. Fig. 7 shows the temperature de-

pendency of the first sample moment of mean dark frames 
(spatial domain), which were obtained by averaging of 100 
images acquired at several temperatures. This averaging 
process serves among others for the thermal noise (dark 
current fluctuation) suppression.  
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Fig. 7. Natural logarithm of the first sample moments (mean 

value) of the mean dark frames as a function of 
temperature, spatial domain. 

Furthermore Fig. 7 well illustrates a linear temperature 
dependency of the natural logarithm of the first sample 
moments of the mean dark frames. From whence it follows 
that mean dark current has approximately exponential 
temperature dependency. 

The following figures demonstrate temperature de-
pendency of the second and fourth sample moments in the 
natural logarithm wavelet domain. The natural logarithm 
domain was utilized because of the considerably sample 
moments’ varying. 

There are the temperature dependencies of the second 
and fourth sample moments in Fig. 8 and 9. From these 
figures it can be concluded that the dark frames have simi-
lar moments in the wavelet domain at a certain decomposi-
tion level. When any uncorrected light image has to be 
corrected using the proposed Bayesian algorithm it is 
firstly crucial to assess the second and fourth sample mo-
ment value in accordance with the light image exposure 
time and temperature. So because of this the temperature 
moments curves have to be interpolated to obtain the mo-
ments value at non-measured temperatures. 
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Fig. 8. Natural logarithm of the second sample moments of 

mean dark frames as a function of temperature, wavelet 
domain. 
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Fig. 9. Natural logarithm of the fourth sample moments of mean 

dark frames as a function of temperature, wavelet 
domain. 

5.5 The Algorithm Implementation 
The final algorithm implementation will be shown 

and explained here. There is the final algorithm imple-
mentation in Fig. 10.  
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Fig. 10. The implementation of the thermally generated charge 

elimination algorithm. 

The uncorrected image y is firstly decomposed to the fifth 
decomposition level (DWT or UWT can be used) then the 
model parameters are estimated using moment method 
(equations 11 to 15). 

The estimated parameters are necessary for other 
processing in the Bayesian estimator (BLSE or MAP). For 
the final image reconstruction it is essential to apply 
inverse wavelet transform to the denoised detail subbands. 
All implementations were coded in the Matlab. 

6. Results 
In this section the results, which were obtained by the 

thermally generated charge elimination algorithm applied 
to astronomical data, will be discussed. 

6.1 Aperture Photometry 
Aperture photometry is based on pixel values integra-

tion in a certain area (called aperture) traced around 
a measured object. This method is practically independent 
of image quality. The problem may occur mainly in the 
case when a measured object laps an aperture. 

There is an illustration of aperture photometry applied 
on the real light image in Fig. 11, where an annulus serves 

for the background measuring (subtracting) and a gap 
avoids a contamination of the sky annulus by a star. The 
aperture size is set as two or three times FWHM (Full 
Width at Half Maximum). Now it is good to note, which 
useful parameters can be computed in the aperture. The 
first parameter is a star magnitude, which is defined below.  
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Fig. 11. Illustration of aperture photometry on real light image 

cut of 2g980831.006.fits. 

A star magnitude tells us how bright the star is. 
Nowadays a magnitude is based on the Poggson equation, 
where the difference of the brightness of the two objects 
(measured and reference) is given by 

1212 log5.2 EEmagmag −=−  (16) 

where E1 and E2 denote the received flux power, mag1 and 
mag2 stand for the objects’ magnitudes. Furthermore 
maximum and minimum pixel value, mean pixel value, 
standard deviation, FWHM etc. should be consequently 
evaluated in the aperture. 

Now it is possible to start with aperture photometry. 
Firstly the chosen images were corrected by all combina-
tions of Bayesian estimators (BLSE, MAP) and wavelet 
decompositions (DWT, UWT). The combination of MAP 
and UWT should not be utilized, because of time con-
sumption. After that image sequence was made, where one 
of them represents three images (an image corrected by 
dark frame, an image corrected by Bayesian estimator, an 
image without any dark frame correction) given into one 
sequence image. In this sequence chosen stars were marked 
and star magnitude measurement was done. There is 3m42-
d03.sbg.dat image in Fig. 12, where marked stars, which 
were measured, can be seen. 
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43
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5

 
Fig. 12. The cut of 3m42-d03.sbg.dat image with the marked and 

numbered stars. 

Tab. 1 and Tab. 2 summarize obtained star magnitudes, 
whereas Mag ref (was set to 10) denotes the reference star 
magnitudes (object 1-5 in the image corrected by the dark 
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frame), Mag rough stands for the magnitudes measured on 
the uncorrected image, Mag measured means magnitudes 
measured on the objects in the images corrected by several 
Bayesian estimators, Δ Mag measured equals to differences 
between Mag ref and Mag measured, Δ Mag rough equals 
to differences between Mag ref and Mag rough. 
 

Mag measured 
BLSE MAP  

Object 

 
Mag 

rough DWT UWT DWT 
Obj. 1 9.912 10.004 9.993 10.014 
Obj. 2 9.962 10.053 9.951 10.131 
Obj. 3 9.987 9.944 9.848 9.988 
Obj. 4 9.989 10.014 9.865 10.080 
Obj. 5 9.950 10.028 9.769 10.038 

Tab. 1. The summary of star magnitudes measurement, the cut of 
3m42-d03.sbg.dat. 

 

Δ Mag measured 
BLSE MAP  

Object 

 
Mag 

rough DWT UWT DWT 

Δ Mag 
rough 

Obj. 1 9.912 -0.004 0.007 -0.014 0.088 
Obj. 2 9.962 -0.053 0.049 -0.131 0.038 
Obj. 3 9.987 0.056 0.152 0.012 0.013 
Obj. 4 9.989 -0.014 0.135 -0.080 0.011 
Obj. 5 9.950 -0.028 0.231 -0.038 0.050 

Tab. 2. The summary of star Δ  magnitudes measurement, the cut 
of 3m42-d03.sbg.dat. 

Summary of absolute value of Δ mag measured along 
with Δ mag rough is in Fig. 13. These dependencies illu-
strate an efficiency of the proposed algorithm. Obviously, 
if value of Δ mag measured is larger than Δ mag rough 
then the magnitude of the measured objects was measured 
better in the image corrected by Bayesian estimator. 

7. Conclusion 
The novel method for the thermally generated charge 

elimination was proposed. This method is based on the 
model of the light image and the dark frame in the wavelet 
domain. The equation system for the model parameters 
estimation was derived. The extensive measurement on the 
astronomical camera were proposed and done. After that 
the set of the astronomical testing images was corrected 
and then the objective criteria for image quality evaluation 
were applied. Objective criteria were based on aperture 
photometry. The photometry has shown that the proposed 
algorithm should be utilized for dark frame correction of 
various classes of astronomical images. Furthermore the 
algorithm considerably improves visual image quality, 
whereas fainter objects become visible and detectable. 
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Fig. 13. The cut of 3m42-d03.sbg.dat, absolute value of Δ mag 

measured along with Δ mag rough, top - BLSE DWT, 
middle - BLSE UWT, bottom -  MAP DWT. 
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