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Abstract. The paper is focused on ultrasonic transmis-
sion tomography as a potential medical imaging modality,
namely for breast cancer diagnosis. Ultrasound attenuation
coefficient is one of the tissue parameters which are related
to the pathological tissue state. A technique to reconstruct
images of attenuation distribution is presented. Further-
more, an alternative to the commonly used filtered backpro-
jection or algebraic reconstruction techniques is proposed.
It is based on regularization of the image reconstruction
problem which imposes smoothness in the resulting images
while preserving edges. The approach is analyzed on syn-
thetic data sets. The results show that it stabilizes the image
restoration by compensating for main sources of estimation
errors in this imaging modality.
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1. Introduction
Ultrasound transmission tomography is a potentially

promising alternative to standard X-ray imaging in medi-
cal diagnosis, especially in mammography. This is mainly
due to the non-ionizing character of ultrasound and high in-
formation content of the measured signals that could poten-
tially result in high-resolution imaging.

The measurement setup is similar to the X-ray com-
puted tomography setup [12]. The imaged object (e.g. hu-
man breast), immersed in a water tank, is surrounded by
transducers emitting and receiving ultrasound field to and
from various directions.

Compared to X-ray computed tomography, the ultra-
sound field and the image reconstruction algorithms are
rather complex and computationally demanding. This is be-
cause the wavelength of ultrasound and the size of the im-
aged structures are comparable so that diffraction and re-

fraction are substantial. As a result, ultrasound transmission
tomography is still in the research state. More robust image
restoration methods and application of more accurate math-
ematical models of the ultrasound field are needed.

Several ultrasound parameters of the tissue can be es-
timated. Reflectivity (echogenity) is the primary parameter
utilized also in the conventional B-mode scanners. Further
options for the imaged parameters are the speed of sound
and the attenuation coefficient. Here, the ultrasound trans-
mission tomography setup is considered with the aim to im-
age a map of ultrasound attenuation-coefficient distribution
in the immersed object. This tissue parameter is closely re-
lated to the tissue type and its pathological state and is thus
of a high diagnostic value [6]. Hence, ultrasound attenuation
tomography could be used as a standalone imaging modal-
ity. Furthermore, the obtained attenuation maps are intended
to be used for correction in ultrasound reflectivity imaging
[18], [5], which is a method utilizing the same signals with
tissue reflectivity as the imaged parameter.

In the published methods [19], [11], [3], the princi-
ple is directly derived from X-ray computed tomography.
The emitted ultrasonic pulse is supposed to propagate along
a narrow straight line. Cumulative attenuation coefficients
along the propagation paths are estimated and arranged to
projections. The problem of attenuation-coefficient image
reconstruction, formulated as the inverse Radon transform
[12], may then be solved by means of the filtered backpro-
jection method. The major artifacts of these methods are
caused by refraction, phase cancellation (due to distorted
phasefront of the received pulse or the non-normal inci-
dence), varying speed of sound and pulse detection prob-
lems.

An alternative to the filtered backprojection are the so
called algebraic reconstruction techniques (ART) [12]. The
problem of an approximation to the inverse Radon transform
is formulated as the solution of an overdetermined set of lin-
ear equations. This approach is more general because it can
also be used for nonstraight propagation paths (e.g. reflected
and scattered waves), which is potentially a valuable addi-
tional source of useful information [9].
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Kaczmarz method of projections [12] is a well accepted ART
method giving satisfactory results for problems with square
matrices. The main advantage of the method is that it works
only with one equation at a time and therefore, there is
no need to load the entire system to the memory. Further,
the method is convergent when the system matrix is invert-
ible and no further assumptions about the system matrix are
necessary unlike the other linear iterative methods. As the
Kaczmarz method applied to overdetermined systems does
not give optimal results (in the least squares sense), in [15],
[16], an extended Kaczmarz method resulting in optimal
least-squares solution is presented and applied in algebraic
image reconstruction [17]. In [14] we have applied the ex-
tended Kaczmarz method to our problem of attenuation map
reconstruction.

As the memory size and computational power is not
a serious limitation in this context any more, the Kacz-
marz methods can be replaced by more advanced solution
techniques. In this paper, the use of regularization tech-
niques [7], [2] is investigated which leads to a system of
non-linear equations. The solution is again iterative, based
on the half-quadratic algorithm presented in [4].

The contribution of this paper is the introduction of
regularized image reconstruction techniques to the field of
ultrasound transmission tomography. More specifically,
an available edge-preserving regularization technique [2]
was adopted to the restoration of attenuation-coefficient
maps. This improves the solution of the equation set
by including constraints on smoothness of the resulting
attenuation-coefficient image while preserving edges (in-
terfaces between the tissue structures). Using simulated
data, the regularization method is analyzed with respect to
the main sources of estimation errors in this modality.

2. Formulation of the Image Recon-
struction Problem
The presented ultrasound attenuation tomography ap-

proach is derived for a two-dimensional (2D) setup, where
the imaged object, immersed in a water tank, is enclosed
by a ring of transducers (Fig. 1). At a time, one transducer
is always in the emitting mode, while all other transducers
record the received radiofrequency signals. Then, the next
element is emitting and all remaining transducers are record-
ing and so on, until all transducers have been used as emit-
ters (see [20] for a description of such a 2D experimental
transmission tomography system).

The emitted pulse is an undirected wave in the tomo-
graphic plane. Thus, the pulse spreads as a spherical wave;
in the direction normal to the tomographic plane the pulse
is supposed to be narrow. Such transmitted fields can be ap-
proximately achieved by a transducer with a small crossec-
tion in the tomographic plane and focused to this plane.

In this study, only the first pulse s(t) of the received
radiofrequency signal rf(t) is used in the computation (see
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 Fig. 1. Data acquisition in the 2D transmission tomo-

graphy setup.

Fig. 1). It corresponds to the directly transmitted wave.

Taking any combination of the sending and receiving
elements, the amplitude spectrum of the first-pulse signal
s(t) is [10]

|S(ω)| = |S0(ω)| · e−βd| ω2π |
n

(1)

where ω is the frequency, d is the distance between the send-
ing and receiving element and S0(ω) is the spectrum of a
pulse recorded with no object between the sending and re-
ceiving transducers (only water in the measurement tank,
whereas the attenuation of water is neglected). It describes
the electrical signal applied to the input of the sending trans-
ducer modified by the electroacoustical transfer functions of
the transducers. β is the mean attenuation coefficient of the
tissues along the direct propagation path l between the trans-
ducers, n is the frequency dependence coefficient of the at-
tenuation; for soft tissues n ≈ 1 [8].

Having a discretized attenuation-coefficient map in the
tomographic plane, the mean attenuation coefficient β can
be expressed using the local attenuation coefficients of each
pixel βi lying on the direct propagation path l:

βd =
∑
i∈l

βidi (2)

where di is the length of the path l inside the i-th pixel.
An overdetermined set of linear equations can be formulated
based on (2) as

Rf = p. (3)

Each equation corresponds to one combination of the send-
ing and receiving transducers. The column vector of un-
knowns f consists of the local attenuation coefficients βi of
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 Fig. 2. Illustration of the logspectral difference method

for estimation of the mean attenuation coeffi-
cient along a propagation path.

all pixels located inside the ring of transducers. The matrix
R consists of pixel path-length values de,i, corresponding to
di in (2), where i is the pixel index and e is the index of the
equation, i.e. the propagation path. The right-side column
vector p consists of the attenuation terms βd for each prop-
agation path. It can be estimated by several methods [19].
Here, the logspectral-difference method is used. It is derived
directly from (1) reformulated as

βd| ω
2π
|n = ln |S(ω)| − ln |S0(ω)|. (4)

Hence, the logspectral difference on the right side of (4) is
an approximately linear function of frequency for soft tis-
sues. βd is estimated using linear regression as the slope of
the logspectral difference, estimated in the frequency range
corresponding to the transducer’s bandwidth B (centered at
the mean frequency ωc of the transducers), see Fig. 2. As the
method relies only on the shape of the logspectral-difference
curve instead of energy levels of S0(ω) and S(ω), it is more
robust with respect to the refraction effects (which decrease
energy of the wave detected at the receiving aperture) [19].

3. Regularized Image Reconstruction

3.1 Direct Image Reconstruction
The problem of attenuation-coefficient image recon-

struction is formulated as a solution of the equation set (3).
Let us assume that the number of available sender-receiver
combinations is much higher than the number of unknown
pixels in the resulting attenuation-coefficient image. Then,
the system is overdetermined and there is no exact solution
for the vector f . Nevertheless, an optimal solution f̂ can be
computed by minimization of a suitable functional J1(f):

f̂ = argmin
f

(J1(f)). (5)

The functional J1(f) is based on the Euclidean norm as fol-
lows

J1(f) =
1
2
‖p−Rf‖2. (6)

The necessary condition for a minimum of J1 is

∂J1

∂fi
= 0, i = 1 . . . n. (7)

These equations are called normal equations and since the
functional J is quadratic, the system (7) can be formulated
as

R>Rf = R>p. (8)

The system above is a linear N × N system that can be
easily solved by some direct or iterative methods, e.g. LU
decomposition.

3.2 Motivation for Regularization
The direct technique presented in the previous section

gives reasonable results for accurate measurements of the
mean attenuation coefficients forming the right hand side
vector p and for a high degree of over-determination. How-
ever in practice, these assumptions are not valid and the
quantitative attenuation-coefficient estimations are thus un-
satisfactory [14]. The estimates of the mean attenuation co-
efficient along the propagation paths include many sources
of errors:

• distortion of the wave front due to interference of
time-delayed waves caused by diffraction and varying
speed of sound in the imaged object,

• the transmission pulse and the scattered/reflected sig-
nals partially overlap in the received radiofrequency
signal, causing errors in the transmission pulse deter-
mination,

• the positions of the senders and receivers are not given
accurately,

• presence of noise in the measured radiofrequency sig-
nals.

Based on the assumed range of the mean attenuation
coefficient, some equations can be detected as outliers and
left out from the equation set. The lower bound of the mean
attenuation coefficients is 0 (meaning positive coefficients),
while the upper bound can be set according to the expected
attenuation coefficients of the imaged tissue. Leaving out
the outlier equations leads to a decreased degree of over-
determination.

The right hand side vector of the remaining equations
is degraded by the above listed errors. They can be modeled
as an additive random noise term, in the first approximation.

To cope with the errors in the mean-attenuation-
coefficient estimates, introduction of some additional infor-
mation is needed, which would better constrain the desired
solution. These constraints can be derived from the prop-
erties of the soft tissue. First, the tissue usually contains
homogeneous regions with almost constant attenuation coef-
ficient. Second, the imaged objects in the soft tissue (tumors
or cysts) are assumed to have well-defined boundaries which
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correspond to image edges—step changes in the attenuation
coefficient.

This a priori information leads to two constraints:

(a) the homogeneous regions of the attenuation map
should be smooth, i.e. the differences of neighboring
pixels should be kept low

(b) the edges in the map should be preserved, i.e. the
smoothing process should not blur the step changes
of the attenuation coefficients

The above given constraints are frequently applied in
the field of image deconvolution. Based on the problem
formulation, these methods are known as regularized or
Bayesian deconvolution [13]. Hence, a similar approach
was applied to the problem at hand.

3.3 Edge-Preserving Regularization
One of the well known regularization techniques is the

Tikhonov regularization. It is based on quadratic penaliza-
tion of the differences between neighboring pixels [7]. How-
ever, this idea goes against one of our requirements which is
the preservation of the important edges.

An improved technique, called edge-preserving regu-
larization [2] seems to be suitable for the actual problem of
the attenuation map reconstruction. It is based on minimiza-
tion of an augmented functional

f = argmin
f

(J1(f) + λ2J2(f)) (9)

where J2 is an additional regularizing term

J2(f) =
∑
k

φ[(Dxf)k/δ] +
∑
k

φ[(Dyf)k/δ] (10)

where Dxf and Dyf are differences between neighboring
pixels (discrete image gradient components)

(Dxf)ij = (fi,j+1 − fi,j) (11)
(Dyf)ij = (fi+1,j − fi,j) (12)

and both δ and λ are parameters defined bellow. The defini-
tion of the regularizing term shows that the differences Dxf
and Dyf between neighboring pixels are again penalized.
However, the penalization is given by a potential function φ
which is an even cost function with specific properties en-
forcing the preservation of the edges.

In [2] three possible potential functions φHS , φHL and
φGM are given. The plots of the functions are depicted in
Fig. 3 and the mathematical definitions are:

φHS(t) = 2
√

1 + t2 − 2, (13)
φHL(t) = log(1 + t2), (14)

φGM (t) =
t2

1 + t2
. (15)
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Fig. 3. Potential functions φHS , φHL and φGM from
left to right. The first function φHS weakens
penalization by calculating it as an approxima-
tion of a linear function, while both φHL and
φGM slow down the penalization for large abso-
lute values of the argument.

The first potential function φHS (an approximation of the
absolute value) implements linear penalization of the dif-
ferences between the neighboring pixels. Compared to the
Tikhonov regularization (where the potential function φ was
a quadratic function), high gradient values are penalized
with a lower weight. However, the preservation of large gra-
dients is not explicitly enforced.

The scenario is different when the potential functions
φHL and φHS are considered. In both cases, for the small
gradients, the penalization increases steeply with the gradi-
ent values, however it “slows down” as the differencesDxf ,
Dyf further increase. This “slowing down” is more appar-
ent in case of φHS when after some soft threshold the func-
tion is almost constant, i.e. with increasing difference, the
penalization does not increase anymore.

The threshold is applied by multiplying the argument
of the function by the parameter δ, see the definition of the
regularizing term (10). Besides the parameter δ, there is an-
other parameter λ which determines the weight of the term
representing the regularization.

3.4 Half-Quadratic Optimization
Clearly, the functional containing the regularization

term (10) is not quadratic. Therefore, the optimization be-
comes computationally expensive as the resulting system is
non-linear.

In [2], [1] an algorithm based on half-quadratic mini-
mization is described. The main idea behind the modifica-
tion is to introduce auxiliary variables bx and by and to de-
rive an augmented functional J ∗(f ,b) which has the same
minimum in f as the original functional J2(f), but it can
be manipulated by linear algebraic methods [4]. The exact
definition of the functional J ∗(f ,b) can be found in [2].

The half-quadratic optimization is then performed as
an iterative process where in (k)-th iteration two optimiza-
tions are executed as follows:

• having the actual estimation f (k) fixed in, the func-
tional J ∗ with respect to the auxiliary variable is mi-
nimized, i.e.

b(k+1) = argmin
b
J ∗(f (k),b);
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• having the actual estimation of b(k+1) fixed, J ∗ is
minimized with respect to the original variable:

f (k+1) = argmin
f
J ∗(f ,b(k+1)).

It can be shown that having fixed either the current estimate
of f or b, the augmented functional is quadratic in each ar-
gument and therefore each of the minimizations given above
can be computed as a solution of a linear system of equa-
tions. The stopping criterium of the iterative process is de-
fined as

‖f (k+1) − f (k)‖
‖f (k)‖

< ε (16)

where ε is a constant related to the desired accuracy of the
solution.

4. Results

4.1 Data and Evaluation
The algorithms were evaluated on simulated data, so

that the estimated attenuation-coefficient map could be com-
pared with the ground-truth map used for simulation. The
simulation was designed to provide data corresponding to
the experimental ultrasound transmission tomograph de-
scribed in [20]. The ideal radiofrequency signals were gen-
erated assuming propagation of spherical waves with a con-
stant sound speed. No diffraction and refraction effects were
included. The test signals were generated for 100 equidis-
tant transducer positions (a subset of transducers used in
[20]). This leads to 100×100 sender-receiver combinations.
Omitting the combinations where the sender and receiver are
too close, the testing data set consisted of 7228 equations.

The resolution of the attenuation maps to be recon-
structed was set to 50 × 50 pixels. Considering only pix-
els inside the transducer ring, this corresponds to 1256 un-
knowns.

The simulated attenuation map consisted of three dis-
joint homogeneous regions with different attenuation coeffi-
cients. Each of the regions had a sharp boundary represented
by edges in the reconstructed image.

Having the reference attenuation map, the error of the
reconstructed map was evaluated using the mean squared
image difference e. Mathematically,

e =
1

MN

M∑
m=1

N∑
n=1

[
fref (m,n)− f̂(m,n)

]2

(17)

where fref is the reference map, f̂ is the reconstructed map
and m, n are the spatial indices.

To analyze the importance of the regularization, two
modifications of the simulated data were made. First, the
right-hand side vector p of the system was distorted by ad-
ditive Gaussian white noise in order to model the errors in
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Fig. 4. Evaluation of the mean square differences as
functions of the regularization parameters λ and
δ. The plots are given for three data sets,
each with a different noise level – SNR =
∞, 11.3, 1.8 from left to right. Potential func-
tion used: φGM .

the measurements of the mean attenuation coefficient along
the propagation path, as described in section 3.2. The test-
ing data sets with various signal-to-noise ratio (SNR) were
created using different values of the noise variance.

For the second experiment, the system was reduced
by omitting some equations. The reduced system contained
only each n-th equation for n = 2, 3, 4. This was to model
the case of omitting the equations with an out-of-range esti-
mate of the mean attenuation coefficient.

4.2 Estimation of the Regularization Parame-
ters
According to the definition given in (10) the regulariza-

tion term contains two parameters δ and λ. The parameter
values are not known a priori. Hence, the optimal parameter
values for the data at hand were estimated first, i.e. parame-
ters that give a minimal error e, defined by (17).

To analyze the regularization method with respect to
the parameter values and to the right-hand-side degradation,
the complete image reconstruction was applied to data sets
with different SNRs and for a set of parameter values.

Having the particular data set, first some upper and
lower limits for both parameters were set manually. Then,
the intervals of interest for both parameters were divided
into small steps and the reconstruction of the image was
computed for each combination of the values. Fig. 4 shows
the surface plots of the regularized-solution error (z axis) for
varying λ and δ (x and y axis respectively). The plots are
shown for various values of the SNR in the data set. For
each case there is an “optimal valley” of minimal error. It
turned out that the differences between the images obtained
by regularization with parameters from the valley are basi-
cally negligible.

Altogether, it is important to perform a rough optimiza-
tion of the parameters (mainly for the case with a higher
level of noise), however it is sufficient to determine the op-
timal parameters approximately inside the valley. Further-
more, the study of the behavior of the regularization with
respect to the parameters shows that the optimal values of
the parameters differ for different level of the noise. This is
as expected because higher error in the values of the right
hand side needs a higher weight of the regularization term.
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Fig. 5. The effect of the regularization for various
SNRs. Non-regularized and regularized solu-
tions in the first and the second rows, respec-
tively, for SNR = ∞, SNR = 11.3 and SNR
= 1.8 from left to right. The graph shows
the comparison of mean squared errors for both
methods quantitatively.

The behavior of the parameters was very similar for all the
potential functions φHL, φHS and φGM . However, the best
results with the lowest norm of the error were achieved using
the function φGM . This validates the approach based on
the edge preservation as the map being reconstructed has
three regions bounded by sharp edges and according to the
reasons presented in section 3.3, the edges are best preserved
by the potential function φGM .

4.3 Perturbed Right-Hand Side
In this section, the results concerning the regulariza-

tion based reconstruction of the attenuation map from data
with different SNRs are presented. The effect of the regu-
larization is depicted in Fig. 5. In the case when the map
is obtained just by the solution of the normal equations (8),
the regions with different attenuation cannot be reliably re-
solved for SNR < 2. On the other hand, in the case when
edge-preserving regularization (10) is applied, the objects
are still well distinguished. The mean squared error in-
creased with the noise level but to a much smaller extent
than the non-regularized solution. Hence, it seems almost
constant using the scale of Fig. 5. Both requirements from
the section 3.2 are met as the homogeneous areas are clearly
smoothed whereas the edges are still preserved. Moreover,
further experiments showed that if the data are distorted with
SNR < 1, the regions with different attenuation coefficient
can be still distinguished, however, the edges become more
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Fig. 6. The effect of the regularization on reduced equa-
tion systems. Non-regularized and regularized
solution in the first and second row, respectively,
for various numbers of the equations 7228 (full
system), 2409 and 1807 equations from left to
right. The graph shows the comparison of er-
rors for both methods quantitatively. The error
of non-regularized solution of system with 1807
is not shown as the system of the normal equa-
tions was singular.

blurred. Some artifacts similar to the real objects appear as
well.

To summarize, the reconstruction from the data dis-
torted by additive noise is significantly improved by the
edge-preserving regularization. Naturally, there are some
limits concerning the noise level.

4.4 Reduced Number of Equations
In this section, the behavior of the regularization for

the system with a reduced number of equations is described.
To obtain the results depicted in Fig. 6 the noise-free system
was first used with all the equations, then reduced to one
half, third and quarter of the original number of the equa-
tions, respectively.

The reduction of the number of the equations was
tested on noise-free system. Therefore, the difference be-
tween regularized and non-regularized solution is negligible
when all equations are used. The situation is similar also in
the case, when a half of the equations is omitted. However,
if only one third of the original number of the equations is
considered, then the non-regularized system becomes sin-
gular and the corresponding image is therefore completely
distorted whereas the regularized system is still solvable and
the reconstructed image is reasonable. It turns out that even
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if only one quarter of the original system is used, the regu-
larized solution is still usable, albeit the edges become more
blurred. The mean squared error increased with the smaller
number of equations. Much steeper increase was observed
for the non-regularized solution. Therefore, the regularized
solution seems to give constant mean square error in Fig. 6
with the used scale.

According to the expectation, the regularization can
help in the case when there is a lower number of equations
available and the level of over-determination is lower.

5. Conclusion and Future Work
The paper presented use of regularized image recon-

struction techniques in ultrasonic attenuation imaging by the
transmission tomography setup. It can be seen as an alterna-
tive to the filtered backprojection or standard algebraic re-
construction techniques usually applied in this application
field. The regularization stabilizes the image restoration by
including some additional information in the solution. The
analysis on simulated data showed that the suggested regu-
larization could be used to compensate for errors in the mean
attenuation measurements.

The main goal for the near future is to apply the recon-
struction technique described in this paper to real data mea-
sured on phantom objects using the 2D and 3D experimental
tomographs presented in [20] and [5]. The parameters of the
regularization method will have to be adapted to the mea-
sured data. Application to the recorded data will also lead to
a significant increase of the number of the equations (about
140 000 equations for the 2D system and about 3 500 000
equations for the 3D system) and therefore, advanced paral-
lelization techniques will have to be considered.

The errors in the mean attenuation-coefficient esti-
mates were modeled as a random additive variable. In the
real measurement setup, this error depends, to a large ex-
tent, on the noise level in the recorded radiofrequency sig-
nal. This is, in turn, related to the emitting/receiving angle,
due to the transducer angular characteristics. This means
that the error in the mean attenuation-coefficient estimation
is not completely random. Hence, the performance of the
regularization technique might be slightly different on mea-
sured data compared to the simulated data.

The regularization technique was also tested on re-
duced equation sets, simulating the case when equations
with the right-hand side outside of the expected range are ex-
cluded from the equation set. This was modeled by leaving
out every n-th equation. For the recorded data, the pattern
of the left-out equations will surely not be as regular as sim-
ulated here. The character will be partly stochastic (due to
the measurement noise, imaged structures) and partly deter-
ministic (depending on the emitting/receiving angle as men-
tioned in the previous paragraph). Hence, assessment of the
regularization technique on the recorded data will have to be
done in the follow-up work.

A drawback of the method that has to be studied further is
the performance on data recorded from objects containing
small structures. Depending on the regularization parame-
ters (δ, λ), some small objects might be smoothed out.

The regularization can be further improved by consid-
ering a broader neighborhood of each pixel (not only the
directly adjacent pixels). Depending on the properties of the
uncertainties and noise, also some other types of constraints
will be applied, e.g. the non-negativity as well as upper-
bound constraints.
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[14] PETERLÍK, I., JIŘÍK, R., RUITER, N. V., STOTZKA, R., JAN,
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