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Abstract. This paper deals with a method of the radiation 
pattern determination of the directional antennas. The 
method combining both the functional minimization 
method and the Fourier iterative algorithm is based on the 
phaseless near-field measurement on two plane surfaces. 
The method is used for a reconstruction of the phase dis-
tribution on the aperture of the measured antenna, and for 
the determination of the antenna radiation pattern, conse-
quently. The binary genetic algorithm (BGA), the real-
valued genetic algorithm (RVGA), the particle swarm op-
timization (PSO), and differential evolutionary algorithm 
(DEA) were chosen for the global functional minimization. 
The paper is aimed to analyze the performance of the 
global optimizations (GOs) when solving the described 
problem, and to compare the GOs. GOs were examined 
through data achieved by measurement of a horn antenna 
and a parabola. 
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Radiation pattern, planar near-field scanning, particle 
swarm optimization (PSO), binary genetic algorithms 
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differential evolutionary algorithm (DEA), Fourier 
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1. Introduction 
When dealing with a near-field to far-field (NF-FF) 

transformation for an antenna measurement, traditional 
techniques require not only the amplitude but also the 
phase information of the NF data in order to calculate ac-
curately the far-field pattern of the antenna under test 
(AUT). However, obtaining the complex (amplitude and 
phase) values of the electric field intensity at millimeter-
wave frequencies is difficult. At low frequencies, the am-
plitude-only measurement techniques are economical to 
employ. These reasons are often the motivations of study-
ing techniques that allow the calculation of the FF pattern 
from amplitude measurements in the NF. 

In this paper, a method applicable to computing FF 
antenna patterns from NF phaseless measurements on two 
plane surfaces placed in different distances form antenna 

aperture is presented. The method is based on the recon-
struction of the complex intensity of an electric field distri-
bution on the measured antenna aperture from the meas-
ured amplitudes, and the determination of the antenna 
radiation pattern consequently (shown in Fig. 1).  

 
Fig. 1. The principle of the NF antenna phaseless measure-

ment. 

For the reconstruction of the phase distribution, two 
methods are exploited, the functional minimization method 
[1] and the Fourier iterative algorithm (FIA) [2].  

In our case, the binary genetic algorithm (BGA), 
the real-valued genetic algorithm (RVGA), the particle 
swarm optimization (PSO) and differential evolutionary 
algorithm (DEA) (used in [11]) were chosen for the func-
tional minimization. The paper originality is in the applica-
tion and comparison of four different global optimization 
methods (BGA, RVGA, PSO, DEA) to find the initial 
estimation in the area of the global minimum. 

Their comparison was carried out on the radiation 
pattern reconstruction of the horn antenna and the pa-
rabola. Since the global optimization does not reach accu-
rate results in a given time, we use them to find an initial 
estimation only. For faster revealing of the global 
minimum area, this paper considers also possibilities of 
accelerating the GOs.  

The achieved initial estimation is improved by the 
second mentioned method, Fourier iterative algorithm (the 
local method). In the paper, a method combining both the 
functional minimization and the Fourier iterative algorithm 
is described [3], [11]. 
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2. Phase Reconstruction Method 
The functional minimization method is based on the 

minimization of the difference between the calculated am-
plitudes and measured ones on two plane surfaces in the 
near-field region. Revealing the minimal function repre-
senting the complex intensity of the electric field distribu-
tion on the aperture of the measured antenna is our goal. If 
the phase distribution on the aperture is known, we are able 
to determine both the phase distribution on two scanning 
planes and the antenna radiation patterns.  

The algorithm of the functional minimization assumes 
knowledge of the amplitudes on two plane surfaces at least, 
scanning planes distances from the AUT and dimensions of 
the AUT.  

The used method can exploit local optimization tech-
niques or global ones. At the present, the functional mini-
mization is mainly based on the local minimization meth-
ods (the Newton method, e.g.). In general, both a global 
minimum and a few local minima can be revealed when 
searching for minima of the functional. The number of 
local minima increases with an increasing error of meas-
ured amplitudes. Thus the local minimization can be used 
in case of choosing an initial estimation in the area of the 
global minimum only or in case of an adjusted functional 
without local minima [1], [4]. 

 
Fig. 2. The flow chart of minimizing algorithm by global 

optimization (GO). 

Global optimization techniques are very useful in 
electromagnetic issues, when searching for the global 
maximum (minimum) in a multidimensional domain. In 
contrast to the local minimization, the use of the global 
algorithm is not conditioned by any choice of the initial 
estimation and an additional modification of the minimized 
functional. On the other hand, the convergence can slow 
down. 

The difference between the local approach which is 
used for the minimization of the functional in [1] and the 
global one consists in the fact that error distributions cal-
culated in distances of scanning planes are transformed 
back into the plane of the measured antenna aperture in 
case of minimizing the functional. The method requires 
moreover executing four Fourier transformations and two 
multiplications. Thus, using the global algorithm leads 
moreover to the reduction of the CPU-time required for 
evaluating the objective function and to the acceleration of 
the process. The flow chart of the minimizing algorithm is 
shown in Fig. 2. 

 
Fig. 3. The flow chart of the Fourier iterative algorithm. 

The second part consists of the Fourier iterative algo-
rithm [2] which also minimizes the functional. The flow 
chart of the Fourier iterative algorithm is shown in Fig. 3. 
The initial estimation achieved by the functional minimi-
zation method is refined in every step. The whole cycle is 
finished if the difference between the actual value and 
the previous one is smaller than the defined value or if 
the difference between the measured amplitudes and 
the estimated ones is better than the required accuracy. 
The iterative algorithm is simpler and more straightforward 
against the method of the functional minimization. On 
the other hand, the convergence can be slower compared to 
the numerical methods. A success of the Fourier iterative 
algorithm as well as other local methods depends on the 
choice of the initial estimation. Thus, the method is suitable 
for our case.  
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The functional F which is minimized by both 
the algorithms is of the following form: 
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In (1), E1(i, j) is the computed complex intensity in the 
point i, j on the first scanning plane, and E2(i, j) is the 
computed complex intensity in the point i, j on the second 
scanning plane. Next, ( )jiM ,~

1  is the measured amplitude in 
the point i, j on the first scanning plane, and ( )jiM ,~

2  is the 
measured amplitude in the point i, j on the second scanning 
plane. 

The presented method eliminates all the hereinbefore 
disadvantages. The method combines the global optimiza-
tion and the Fourier iterative algorithm [3]. First, the algo-
rithm is used to find an initial estimation lying in the area 
of the global minimum. The second part consists of the 
common Fourier iterative algorithm improving the initial 
estimation. 

2.1 Global Optimization: 
BGA, R-VGA , PSO and DEA 
Four global optimizations were chosen for the func-

tional minimization: the binary genetic algorithm (BGA), 
the real-valued genetic algorithm (RVGA), the particle 
swarm optimization (PSO), and the differential evolu-
tionary algorithm (DEA). 

2.1.1 Particle Swarm Optimization 

The PSO algorithm emerges as a powerful stochastic 
optimization method inspired by the social behavior of 
organisms such as bird flocking or fish schooling, in which 
individuals have memory and cooperate to move towards 
a region containing the global or a near-optimal solution 
[5]. The PSO is exploited to solve a multi-dimensional 
discontinuous problem. Concretely, the swarm moves in 
a 390-dimensional space (390 real unknowns). The 
solution space is bordered from –π to +π in case of phases 
and from zero to an existing maximal value on the first 
sampling plane in case of amplitudes.  

The algorithm is initialized by an initial random dis-
tribution of the swarm and by searching the personal 
minimum pbest and the global minimum gbest in the given 
space. The position of the global minimum and the per-
sonal one are used to determine an optimal velocity opera-
tor (the direction and the speed of flight) of the agents to 
the area of best solutions in the next iteration [5]. For up-

dating the velocity operators, we applied the following 
formulas [6]: 

 ( ) ( )[ ]nnnnnn rrK xgxpvv −+−+= 2211 ϕϕ , (2) 

 nnn t vxx Δ+=  . (3) 

Here, vn is the velocity vector of the nth agent, xn denotes 
the position of the nth agent, pn is the position of the per-
sonal optimum of the nth agent, and gn is the position of 
the global optimum of the whole swarm. Next, r1 and r2 are 
random numbers from 0 to 1, the factor K is known as 
a restriction factor, ϕ1 and ϕ2 are the acceleration constants. 
PSO exhibits the best convergence properties if the restric-
tion factor is chosen 0.729 and acceleration constants equal 
to 2.4 and 1.7, respectively [3], [9]. If a new velocity vec-
tor of the agent is known, its new position can be computed 
by (3) where Δt is a time step usually chosen to be one. 
Otherwise, the algorithm shows the best properties when 
absorbing walls were chosen as the border condition, and 
the swarm consisted of 30 agents [3]. 

2.1.2 Genetic Algorithms 

By analogy with natural selection and evolution, the 
set of parameters to be optimized (genes) defines an indi-
vidual (chromosome). The set of individuals forms the 
population, which is evolved by means of the selection, the 
crossover, and the mutation genetic operators [7]. In this 
paper, two GA-based schemes have been investigated and 
implemented: classical binary encoding [7, 8] and real-
valued GA [8]. 

In the case of the binary GA, thirty individuals were 
chosen to form a population. Each individual (chromo-
some) consisted of binary genes by 8 bits. The elitist strat-
egy was taken into account. Half best individuals were 
propagated unchanged. The tournament was used for se-
lecting parents. Parents were obtained by two rounds 
selection and were sorted by fitness function. Parents were 
selected to make 14 new offspring by the uniform cross-
over and the five new offspring were created by the muta-
tion of the remained parents. 15 best offspring from this 
group completed the elitist. The probability of crossover 
was set to pc = 70 %, and the probability of mutation to 
pm = 25 %.  

In the case of the real-valued GA, the number of bits 
required to accurately encode a parameter does not need to 
be considered. Instead, the amplitudes and phases are en-
coded in terms of real numbers in between the given 
bounds. The number of chromosomes was set to 24 in the 
initial population. The tournament selection was the best 
selection strategy, and the linear crossover was the selected 
crossover strategy. In this case, three offspring are gener-
ated from two chosen parents by following formulas [8]: 
 dnmnnew ppp 5.05.01 += , (4a) 

 dnmnnew ppp 5.05.12 −= , (4b) 
 dnmnnew ppp 5.15.03 +−=  (4c) 
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where pmn is the nth parameter in the mother chromosome 
and pdn is the nth parameter in the father chromosome. Any 
parameter outside the bounds is discarded in favor of the 
other two ones. Then, the best two offspring are chosen to 
propagate. 

12 parents were chosen by the tournament selection to 
make 12 offspring by the linear crossover and the last two 
offspring were created by the mutation of two random 
parents. These 14 new individuals completed 10 elitist 
individuals. The probability of the crossover was set to 
pc = 100 %, and the probability of the mutation to 
pm = 25 % [13]. 

2.1.3 Differential Evolutionary Algorithm 

Differential Evolution algorithm (DEA) is a new heu-
ristic approach which works with real numbers as well as 
RVGA [12]. The DE algorithm is a population based algo-
rithm like genetic algorithms using the similar operators; 
crossover, mutation and selection. The main difference is 
that genetic algorithms rely on crossover while DEA relies 
on mutation operation.  

DEA is a parallel direct search method which utilizes 
NP (number of the individuals in population) D-dimen-
sional parameter vectors xi,G, i = 1, 2, 3, …, NP as a popu-
lation for each generation G. DEA generates new parame-
ter vectors by adding the weighted difference between two 
population vectors to a third vector (5). This operation is 
called mutation. The mutated vector’s parameters are then 
mixed with the parameters of another predetermined vec-
tor, the target vector, to yield the so-called trial vector. 
Parameter mixing is often referred to as “crossover”. 

For each target vector xi,G, i = 1, 2, 3, …, NP, a mu-
tant vector is generated according to [12] 

 )( ,3,2,11, GrGrGrGi xxFxv −⋅+=+  (5) 

where i, r1, r2, r3∈{1, 2,…, NP} are randomly chosen and 
must be different from each other. In (5), F is the scaling 
factor ∈(0, 2). The parent vector is mixed with the mutated 
vector to produce a trial vector uji,G+1 [12] 
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where j = 1, 2, …, D; rand j∈⎢0,1⎢is the random number; 
CR is crossover constant ∈⎢0,1⎢ and rni∈(1,2,…D) is the 
randomly chosen index. If the trial vector yields a lower 
cost function value than the target vector, the trial vector 
replaces the target vector in the following generation. This 
last operation is called selection. 

The parameters of the DEA used for evaluating new 
member were chosen similar to those used in [11]. Thus, 
for our specific case, we have used these parameters: the 
probability of the mutation in mutant vector pm = 0.1, the 
crossover rate CR = 0.9 and the scaling factor F = rand. In 
[11], the scaling factor was set on value 1.2 but we weren’t 

able to find the global minimum area in this case. The 
number of population NP was chosen 24. 

In short, the PSO, RVGA and DEA algorithms re-
quire fewer lines of code than BGA and are easier to im-
plement. Moreover, PSO and DEA against GAs have 
a small number of the parameters to be tuned. In PSO, the 
population size, the restriction factor and the acceleration 
constants and in DEA, number of population, scaling factor 
and crossover rate summarize the parameters to be selected 
and tuned, whereas in GAs the population size, the selec-
tion, the crossover and mutation strategies, as well as the 
crossover and mutation rates influence the results. 

3. Comparison of GO Algorithms 
In this section, the comparison of the global optimi-

zation approaches is presented. Their comparison was 
carried out on the radiation pattern reconstruction of the 
horn antenna and parabola. Data used for analysis were 
available from [3]. 

The horn antenna T1-R100 had the aperture of the 
size 136×101 mm and the horn length of 173 mm. The 
antenna was analyzed at the frequency 12.4 GHz. The 
measurement site is shown in Fig. 4. The horn antenna was 
attached to the tripod so that the longer site of the antenna 
aperture was parallel to the horizontal plane (H polariza-
tion). The scanning probe (the waveguide R100 aperture) 
was oriented horizontally, too. 

 
Fig. 4. The measurement site arrangement. 

The values of the horizontal electric field intensity 
component in discrete points placed in the vertical direc-
tion and the horizontal one with the pitch of 10 mm (0.41λ) 
at two scanning planes of the size 400×400 mm were 
measured by a probe. Generally, 1681 (41×41) values on 
each plane were achieved. The measurement was per-
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formed in the Rayleigh zone. The first plane was placed in 
the distance of 60 mm (~2.48λ) and the second one in the 
distance of 70 mm (~2.89λ) (the distance was measured 
from the antenna aperture to the waveguide aperture). Due 
to the arrangement of the measurement, the valid angle is 
θv = 62o. Since the aperture of the antenna is 136×101 mm 
(15 times 13 sampling points), the solution space contains 
390 real parameters which optimal values are going to be 
found out. 

The second data were from measurement of the pa-
rabola with reflector diameter of 0.6 m. The spacing of 
discrete points was also 10 mm and the scanning planes 
had the size of 800×800 mm. The first plane was placed in 
the distance of 268 mm (~12.86λ) and the second one in 

the distance of 298 mm (~14.3λ). These distances corre-
spond to the valid angle θv = 18.55o. The waveguide R140 
was used as a scanning probe. The antenna was analyzed at 
the frequency 14.4 GHz. The number of scanning points 
was 81×81 and the solution space contains 5202 real pa-
rameters. 

The configuration of the optimization schemes con-
sidered in the analysis is summarized in Tab. 1 and was 
selected according to the results of a preliminary para-
metric study carried out individually with each algorithm 
[3], [9], [10], [11], [13]. Each optimization was repeated 10 
times and was stopped in the 5000th iteration. The aver-
aged realizations are shown in Fig. 5a for the case of the 
horn antenna and in Fig. 5b for the case of the parabola. 

 

Optimization algorithm Parameters 

Real-Valued GA Tournament selection; linear crossover PC = 1; random mutation Pm = 0.25; 
elitism; PS = 24 

Binary GA Tournament selection; uniform crossover PC = 0.7; random mutation Pm = 0.25; 
elitism; PS = 30; 8 bits to encode 

PSO Constant inertia: K =0.729, φ1 = 1.4, φ 2 = 2.4; absorb wall; PS = 30 

DEA pm = 0.1; CR = 0.9; F = 1.2; PS = 24 

Tab. 1. Settings of the optimization algorithms. 

 
a) b) 

Fig. 5. Convergence behavior of the optimization algorithms; a) for case of the horn antenna ; b) for case of the parabola; averaged results for 10 
independent runs carried out with each method. 

 
Obviously from Fig. 5a (390 parameters were opti-

mized), the convergence of the genetic algorithms (GAs) 
and DEA is less declivitous against the particle swarm 
optimization (PSO) but all optimizations reach approxi-
mately similar global minimum values except DEA after 
5000 iteration steps. In the case of DEA, the fitness func-
tions don’t reach such the global minimum values as other 
optimizations and begin to stagnate from about 200 itera-
tion steps. In the case of GAs, the objective functions still 
fall slowly down in contrast to PSO where the fitness 
function almost stagnates from about 2000 iteration steps, 
and is already without any significantly change.  

Clearly from Fig. 5b (5202 parameters were opti-
mized), the BGA has the best convergence properties; 
while the RVGA has the worst ones. It is noteworthy that 
none of the optimization techniques stagnates after the 
5000 iteration. Concerning the computational costs of each 
optimization scheme, Fig. 5 shows the average CPU-time 
required by each method. Results demonstrate the superi-
ority of PSO, RVGA and DEA, which saves up to 50% of 
the CPU-time with regard to BGA in the cases when we 
optimized less number of variables. With an increasing 
number of the variables, the demand on the CPU-time 
increases especially in the cases of GAs.  
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Otherwise, the real-valued genetic algorithm (RVGA) 
converges very quickly to the solution in the initial phase 
in both cases and only PSO which exhibits the best per-
formance exhibits a comparable behavior as RVGA. 
Thereinafter, the RVGA can demonstrate the ability to find 
the global minimum area quickly among of all optimiza-
tions. 

3.1 Results of the NF-FF Transformation 
Achieved by Global Approaches 
All the optimizations were used for the initial 

reconstruction of the phases and amplitudes on the antenna 
aperture and the scanning planes (phases only), 
respectively. 

The far-field results obtained by the optimization 
schemes are shown in Fig. 6 and 7. Fig. 6 shows radiation 
pattern results obtained after 150, 500 and 3000 iteration of 
the optimization schemes for case of the horn antenna, and 
Fig. 7 shows results for case of the parabola. 

Obviously from Fig. 6, only RVGA and PSO reached 
the area of the global minimum after 150 iterations since 
the reconstructed radiation patterns match to the theoretical 
radiation patterns after applying FIA for case of the horn 
antenna (390 optimized parameters). 

   

   

   

   
Fig. 6. Reconstructed H plane (left side) and E plane (right 

side) radiation patterns of the horn antenna after 
appplying: a) BGA; b) RVGA; c) PSO; d) DEA. 

    

    

    

    
Fig. 7.  Reconstructed H plane (left side) and E plane (right 

side) radiation patterns of the parabola after appplying; 
a) BGA; b) RVGA; c) PSO; d) DEA. 

DEA is also able to find the global minimum area after 150 
iterations but the solutions are unstable. In comparison 
with the results in [11] where the global minimum was 
found after several tens of iterations, we weren’t some-
times able to reach the global minimum even after 5000 
iterations. This is probably due to choice of another mini-
mizing functional. BGA has similar features as DEA. The 
solutions achieved after applying BGA are also unstable 
i.e. don’t lie in the area of the global minimum. Certainty 
of the estimation lying in the area of the global minimum is 
obtained after about 3000 iteration [10].  

GOs applied to the measurement data of the parabola 
just confirmed perfect properties of the RVGA (Fig. 7). 
Thus, RVGA surpasses other optimizations by the ability 
of finding the area of the global minimum in an extremely 
short time although it doesn’t exhibit the best convergence 
properties. 

3.2 Influence of Different Spacing between 
Scanning Planes 
In case of the horn antenna, the values of the hori-

zontal electric field intensity component were available on 
three planes at the frequency 12.4 GHz. The scanning 
planes were placed in the distances of 50 mm, 60 mm and 
70 mm. Analysis were carried out for all optimizations. 

c) 

b) 

a) 

d) 

c) 

b) 

a) 

d) 
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Each optimization was repeated 10 times and was stopped 
in the 5000th

 iteration. Influence of the different spacing 
between the scanning planes is shown in Fig. 8.  

 
Fig. 8. Influence of the different spacing between the 

scanning planes. 

In the case of BGA, PSO and DEA, obviously, the 
different spacing between the scanning planes doesn’t 
substantially affect the convergence properties. On the 
other hand, in case of RGA, the convergence speed in the 
scheme using transformation between planes distant from 
each other 10 mm is better than in case where the planes 
are separated by a distance 20 mm. Therefore, it is better 
for given setting RGA when the both scanning planes will 
be closer to each other. 

Due to we have available data only on three planes it 
is difficult to generalize these findings. The influence of 
the different spacing between the scanning planes will be 
monitored closely in the next part of the research. 

3.3 Acceleration of GO Convergence Speed 
Since the convergence speed of the global optimiza-

tions is very slow in the case of the random initial estima-
tion, the limited knowledge of the phase on the antenna 
aperture and the uniform phase distribution were consid-
ered. The phase distribution on the antenna aperture was 
obtained by transforming the known phase distribution 
with a given accuracy from the first scanning plane. The 
phase accuracies on the first scanning plane were chosen 
±5°, ±30° and ±90°.  

The optimizations were repeated 10 times for the dif-
ferent knowledge of the phase on the antenna aperture and 
were stopped in the 1000th iteration. The averaged realiza-
tions are shown in Fig. 9. 

Fig. 9 shows that knowledge of the phase distribution 
with various accuracies on the antenna aperture influences 
the convergence speed and reached objective function 
value. In the case of PSO and RVGA, the convergence 
curves are comparable with the random estimation whereas 
in the case of BGA and DEA, the influence of the phase 
knowledge is noticeable. Notice that all convergence 
curves have the similar progress regardless of the phase 
accuracy on the antenna aperture except DEA. 

 

 

 

 
Fig. 9. Comparison of the random estimation, the uniformly 

estimation and the estimation with various knowledge 
of the phase on the antenna aperture; a) BGA; b) 
RVGA; c) PSO; d) DEA. 

Comparison of the random estimation and the estima-
tion with uniformly selected phase distribution on the an-
tenna aperture is also shown in Fig. 9. The uniform phase 
distribution means that the constant phase distribution is 
chosen on the whole antenna aperture. The phase is divided 
uniformly according to the number of the agent in the 
swarm and the number of the chromosome, respectively. 
The uniform phase distribution achieves better objective 
functions than random estimation whereas the improve-
ment is noticeable in the case of GAs. Compared to the 

c) 

b) 

a) 

d) 
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random estimation, the convergence curves decrease al-
most twice quickly and reach twice smaller objective 
function value. Let us emphasize that the convergence 
speed depends on the type of the given antenna in the case 
of the uniformly phase distribution. 

4. Results of the NF-FF Transforma-
tion 
All the optimizations were used for the initial recon-

struction of the phases and amplitudes on the antenna ap-
erture and the scanning planes (phases only), respectively.  

Fig. 6 and 7 show the radiation patterns which are 
achieved after GOs from the random initial estimation. The 
reconstructed far-field radiation patterns show that any of 
these optimizations has not achieved accurate results yet, 
and the Fourier iterative algorithm has to be applied to 
ensure the required precision of the radiation patterns. The 
far-field results obtained by the optimization schemes and 
the Fourier iterative algorithm (FIA) are shown in Fig. 10 
and 11.  

 

 
Fig. 10. The reconstructed radiation patterns of the horn an-

tenna after applying GOs +FIA; a) H plane; b) E plane. 

In the case of the horn antenna, the reconstructed ra-
diation patterns obtained by the FIA are almost identical 
with the courses gained by the direct transformation. This 
illustrates the correct result, thus finding a global mini-

mum. In the case of the parabola, the reconstructed radia-
tion patterns are in good agreement with the direct trans-
formation only in cases of the initial estimations obtained 
by PSO and RVGA. In the case of PSO, the initial estimate 
was obtained after about 20 thousand iteration (conver-
gence has stagnated). The estimate achieved by RVGA was 
stopped after about 10 thousand iterations.  

As shown in Fig. 11, FIA has not been able to recon-
struct the radiation patterns of the parabola from the initial 
estimate achieved by the DEA and the BGA, even after 30 
thousand iterations. 

 

 
Fig. 11. The reconstructed radiation patterns of the parabola 

after applying GOs + FIA; a) H plane; b) E plane. 

Thus, on the basis of the achieved results, we can 
conclude that all optimizations are able to reach the global 
minimum in the cases of relatively small number of the 
variables. But only PSO and RVGA passed in the cases of 
the large number of the optimized variables. PSO with 
given parameters exhibits better convergence properties 
than other optimizations but RVGA is able to find the area 
of the global minimum in a shorter time than PSO. From 
this view, DEA and BGA have worse properties. 

The limited knowledge of the phase on the antenna 
aperture and the uniform phase distribution noticeably 
affect the convergence acceleration of the minimization 

a) 

b) 

a) 

b) 
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algorithm in the case of DEA, BGA and RVGA, and lesser 
in the case of PSO. Moreover, it was found out that for 
given setting of the RVGA, the convergence has better 
properties when the both scanning planes will be closer to 
each other. 

PSO and DEA are easier to tune and implement than 
GAs. The CPU-time demands of PSO and DEA are compa-
rable and in comparison with the GAs are smaller. PSO 
and RVGA seem to be the suitable tool to solve the prob-
lem for the ability of finding the area of the global mini-
mum in a short time. 

5. Conclusion 
GAs, PSO and DEA were compared, their pros and 

cons investigated and reported when used as a part of the 
method that uses amplitudes on two scanning planes in the 
near zone of the antenna for the reconstruction of the an-
tenna radiation patterns. 

All mentioned optimizations were demonstrated to be 
the efficient tool for minimizing complicated multi-dimen-
sional discontinuous problems. PSO and RVGA surpass 
DEA and BGA by the ability of finding the area of the 
global minimum in a shorter time. That’s why they seem to 
be the suitable tool for our problem. 

Associating the global algorithms and the Fourier 
iterative algorithm, we obtain a procedure which is able to 
reconstruct radiation patterns from the random initial esti-
mation. 
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