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Abstract. This paper deals with the readout electronics 
needed by superconductor Microwave Kinetic Inductance 
Detectors (MKIDs). MKIDs are typically implemented in 
the form of cryogenic-cooled high quality factor micro-
wave resonator. The natural frequency of these resonators 
changes as a millimeter or sub-millimeter wave radiation 
impinges on the resonator itself. A quantitative system 
model of the readout electronics (very similar to that of a 
vector network analyzer) has been implemented under ADS 
environment and tested by several simulation experiments. 
The developed model is a tool to further optimize the read-
out electronic and to design the frequency allocation of 
parallel-connected MKIDs resonators. The applications of 
MKIDs will be in microwave and millimeter-wave radio-
metric imaging as well as in radio-astronomy focal plane 
arrays. 
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1. Introduction 
Superconductor Microwave Kinetic Inductance 

Detectors (MKIDs) make use of the change in the surface 
impedance of a superconductor as incoming photons break 
up Cooper pairs. This is accomplished by making the strip 
of superconductor part of a microwave resonant circuit, 
and monitoring the phase of a signal transmitted through 
the resonator itself [1]. Because of their high responsivity 
and low Noise Equivalent Power (NEP), MKIDs have re-
cently proposed as detectors for millimeter and sub-milli-
meter wave radio-astronomical observations as well as for 
radiometric imaging. In addition, several MKIDs could be 
combined to form a passive sensing array. With this ap-
proach a direct imaging will be possible by simply placing 
the array in the focal plane of the radio-telescope, i.e. 
without the need to spatially scan the main antenna of the 
system. 

Dealing with many MKIDs (one for each pixel), how-
ever, has a main problem: a large number of coaxial cables 

are needed to come in and out of a multi-stage cryostat, 
thus making impossible, in practice, such an approach. To 
solve this problem a frequency division multiplexing has 
been suggested. In this way only two coaxial cables (one 
for input and one for output) are needed, whereas each 
pixel is realized exploiting a MKID microwave resonator at 
a different frequency. Because of the very high quality 
factor of these superconductor resonators (typically 106), 
thousand of pixels can be allocated in a frequency band of 
few GHz.  

The above approach is enabled by a readout elec-
tronics resembling that of a Vector Network Analyzer [2]. 
Purpose of this electronic is the measurement of the fre-
quency response of the resonator, both in magnitude and 
phase. Since the quality-factor of the MKID resonators is 
very high particular attention must be paid to the stability 
of the frequency source. The latter is realized with high-
end Phase-Locked Loop (PLL) synthesizer. 

In this paper a system model of the readout electron-
ics is proposed for the first time and implemented under 
ADS environment. The architecture of the system is dis-
cussed starting from that reported in [1]. First an equivalent 
circuit of the MKID resonator is developed. Then system-
level simulations are performed showing that the readout 
of more resonators connected in parallel (i.e. of more 
pixels) is possible through a single frequency sweep. 

2. System Architecture 
The block diagram of the single channel is in Fig. 1. It 

is composed by a PLL-synthesizer acting as frequency 
source [3]. This synthesizer will be controlled by an exter-
nal PC through a serial interface (RS-485 in Fig. 1). The 
main purpose of the control is to set the frequency gener-
ated by the source. This frequency should be in the range 
4 GHz to 8 GHz (one octave) in such a way as to accom-
modate MKID resonators of different mechanical length. 

In order to measure the frequency response of the 
resonator, the frequency must sweep between a minimum 
value and a maximum value. Such a frequency sweep is 
accomplished in discrete steps. For each step, the suitable 
frequency value is programmed into the synthesizer and the 
resonator output is measured. All these operations are 
controlled by the above mentioned PC. 
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Fig. 1. Readout electronics for Microwave Kinetic Inductance Detectors: block diagram. 

 
Once the carrier-signal at the desired frequency has 

been generated, it is divided in two equal parts, i.e. two 
signals with half of the original power and with the same 
phase are produced. To this purpose a broadband power 
divider is adopted [4]. The first output of the power divider 
is exploited as reference signal and is wired to the Local 
Oscillator (LO) input of the I/Q down-conversion mixer 
[5]. The second output of the power divider is first adjusted 
in level by an attenuator and then addressed to the 
cryogenic resonator. 

Such a resonator constitutes the Device Under Test 
(DUT) of our measurement system and is interfaced with 
the readout electronics by means of high-quality micro-
wave cables. At this point it is important to note that the 
superconductor resonator works at only 120 mK [1, p. 57] 
within a two-stage dilution refrigerator. In order to avoid 
the resonator warming (and thus the shift of its frequency) 
under the effect of the incident power, the resonator itself 
is tested at a quite low-power level (typically -96 dBm). 
This means that an amplifier chain is needed to improve 
the signal-to-noise ratio of the present measurement sys-
tem. The first stage of such an amplifier is cooled down to 
4 K and is placed within the first-stage of the dilution re-
frigerator. This amplifier features a full 4-8 GHz coverage, 
a power gain of 14 dB and an equivalent input noise tem-
perature of 4 K. 

The signal emerging from the DUT returns to the 
readout electronics to be measured both in amplitude and 
phase. This task is accomplished by a conventional homo-
dyne receiver [6]. The receiver is composed by a low-noise 
amplifier [7] with 71 dB gain and 120 K noise temperature 
and by an I/Q mixer. The I/Q mixer, available as a single 
component, has been simulated exploiting two mixers, one 
which includes 90 degrees phase shift before its LO. The 
In-phase (I) and Quadrature (Q) outputs of the mixer are 
two baseband signals. The main property of the I/Q signals 
is that the sum of their squared values is proportional to the 

squared amplitude of the incoming RF signal while the 
ratio between Q and I signals is proportional to the tangent 
of the RF signal phase. 

One problem when dealing with homodyne receivers 
is that the relevant frequency component of the I/Q signals 
is the DC component. This means that unavoidable offset, 
gain and phase imbalance of the I/Q mixer must be re-
moved by suitable calibration procedures. In addition, this 
scheme suffers of low-frequency noise (flicker noise) 
problems. The latter aspect must be carefully considered in 
selecting the low-frequency amplification circuitry. Such a 
circuitry can be implemented by means of low-noise 
operational amplifiers [8] as in Fig. 2. 

 
Fig. 2. Low frequency amplifier and filtering section. 

The voltage gain of the operational amplifiers has 
been set to 10. Once amplified by the operational amplifi-
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ers the two channels are filtered by means of integrated 
continuous-time Low-Pass Filters [9]. These components 
are used to set the equivalent noise bandwidth, and thus the 
sensitivity, of the receiver. The system specifications are 
summarized in Tab. 1. 
 

Minimum frequency 4GHz 
Maximum frequency 8GHz 

Frequency step 1kHz 
Maximum quality factor 1000000 

Phase noise @10kHz offset -100dBc/Hz 
Output power level 13dBm 

Readout power -96dBm 
RF power @I/Q mixer input <-10dBm 

Attenuator loss 66dB 
LNA gain 72dB 
Mixer loss 8dB 

Operational amplifier gain 10 
LPF bandwidth 650kHz 

Tab. 1. System specifications. 

3. Resonator Modeling 
The MKID resonators are implemented in coplanar 

waveguide (CPW) technology as reported in [1] and will 
not further be described here. Their equivalent circuit can 
be reduced to that in Fig. 3 where a quarter-wave transmis-
sion line section is coupled to the signal line by means of 
a small capacitor. 

 
Fig. 3. MKID resonator model developed under ADS. 

This model is completely defined by the following 
circuit parameters: physical transmission line length, ef-
fective dielectric, lossy factor and coupling capacitance. 
These parameters have been obtained according to the 
equations in [1, pp. 27-29] as a direct function of the reso-
nance frequency, loaded quality factor and minimum value 
of |S21|. 

To test the equivalent circuit, a 6 GHz resonator has 
been considered. The magnitude and phase responses are 
illustrated in Fig. 4. In this case the loaded quality factor is 
equal to 105 with a minimum insertion loss of -20 dB. The 
simulated frequency span is of only 800 kHz. 

Finally, the above resonator equivalent circuit has 
been inserted into a system-level model of the DUT (see 
Fig. 5). As explained in the previous section, the DUT 
includes also a cryogenic low-noise amplifier. In addition 
a 40dB attenuator is used to set the readout power level. 
Such an attenuator is again within the first refrigerator 

stage: as a consequence its noise temperature contribution 
is only 4 K. 

 

 
Fig. 4. Frequency response (top panel: magnitude; bottom 

panel: phase) of a 6GHz resonator with Ql= 105 and 
minimum |S21| equal to -20 dB. 

 
Fig. 5. System model of the DUT with attenuator, low-noise 

amplifier and resonator equivalent circuit. 

4. System Modeling 
The whole measurement system has been modeled 

under ADS exploiting behavioral building-blocks for all 
the components (i.e. mixer, power dividers, attenuators, 
amplifiers, etc.). Because of the I/Q mixers, a non-linear 
analysis has been carried-out exploiting the Harmonic Bal-
ance (HB) simulator. The purpose of this simulation is to 
determine the output I and Q signals (DC voltage compo-
nents) when the synthesizer frequency is varied. Such a 
synthesizer is described with a “P_1Tone” frequency 
source neglecting its phase noise. The results of HB simu-
lations are: verification of the architectural choices and 
check of the selected components in terms of gain, at-
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tenuation and conversion loss. The HB simulation uses the 
MKID resonator model developed in the previous section. 

The effect of the parasitic signal injection bypassing 
DUT is not considered in the present version on the model. 
This problem has been treated in [1, p. 69] where a carrier 
suppression mechanism is provided in the system archi-
tecture. Such a feature, however, has not been used by the 
author of [1] in producing the experimental results 
reported. 

5. Results 
This section describes the simulation results of the 

whole system. First DUT composed by a single MKID 
resonator with quality factor equal to 105 is considered. 
One of the most valuable results of the HB analysis is that 
the I/Q output signals can be evaluated versus the fre-
quency. This means that the voltage values at the outputs 
of our system can be obtained while simulating a frequency 
sweep. Fig. 6 illustrates these results, plotting the I and Q 
signals over a span of 800 kHz. In Fig. 7, instead, the 
Q signal has been drawn versus the I signal. As a result 
a trajectory in the I/Q plane is obtained, very close to that 
reported in actual measurements, [1, p. 82]. 

 
Fig. 6. I and Q voltage levels in V for a 6GHz resonator with 

Ql= 105 and minimum |S21| equal to -20 dB. 

 
Fig. 7. I/Q trajectory for a a 6GHz resonator with Ql=105 and 

minimum |S21| equal to -20 dB. 

The obtained voltage range of the output signals is 
about 300 mV: this with -10 dBm of power at the mixer 
input. In addition the Q signal can reverse its polarity. 
These details must be carefully considered when selecting 
the ADC and/or the data acquisition board. 

In the second simulation experiment two MKID reso-
nators with different frequencies and quality factors are 
electrically connected in parallel to form a multi-resonator 
DUT. It is worth noting here that such a possibility, al-
though identified by [1], has never been experimented in 
practice. The frequencies of the two resonators are respec-
tively 6000 MHz and 6002 MHz, whereas their quality 
factors are 104 and 105. 

 
Fig. 8. Unnormalized response of two resonators in parallel, 

with quality factors equal to 104 and to 105 respec-
tively. The whole frequency span is 6 MHz. 

After the simulation the I and Q voltages have proc-
essed in such a way as to obtain the magnitude of the vec-
tor (i.e. square root of the sum between I2 and Q2) for each 
frequency point. This magnitude is plotted in dB without 
normalization. The latter normalization could be achieved 
considering the off resonance value or by a calibration (re-
placement of the DUT with a through connection). From 
the analysis of this figure the behavior of the two resona-
tors is clearly visible. 

6. Conclusions 
The analog-RF readout electronics needed by MKID 

applications has been studied in depth both from the archi-
tectural and system point of view. A system model of such 
electronics has been proposed for the first time and devel-
oped under ADS environment. The possibility of detecting 
several resonators within a single frequency sweep has 
been investigated by means of the developed model. Ex-
ploiting this methodology a large number of resonators 
could be tested with only one cryostat and two coaxial ca-
bles: one for input and one for output. This solution will be 
particularly useful for future microwave and millimeter-
wave radiometric imaging systems as well as in radio-as-
tronomy focal plane arrays. In this framework, the devel-
oped model could be useful in determining the frequency 
plan of the resonators prior of their fabrication. 
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