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Abstract. In this paper, we perform an empirical analysis 
of email traffic logs obtained from a large university to 
better understand its impact on the effectiveness and 
efficiency of anonymous mix remailers. We analyzed data 
containing records of almost 790,000 emails sent over 
a period of forty days – the largest dataset we are aware 
of. The initial analysis of data is followed by 
an exploration of how variance in message arrival time 
and size impact the anonymity and efficiency provided by 
timed and threshold mixes, respectively. The analysis 
results are subsequently explored for their possible impact 
on traffic analysis. 
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1. Introduction 
David Chaum introduced the first mix – an instrument 

for ensuring unlinkability of sender and messages in 1981 
[2]. His initial ideas led to many implementations of ano-
nymity systems in the decades since [1, 5, 8, 9, 16]. These 
systems, in turn, not only bolstered notions of privacy in 
information systems but also sparked research in develop-
ing attack techniques.  

One of the first papers on traffic analysis appeared in 
1993 [14], Papers on traffic analysis started appearing 
regularly from 2000 and there is a very good understanding 
of security limits of anonymity systems. Computational 
boundaries for attacks on anonymity systems to be success-
ful have been defined [7, 11, 12, 15] in the last few years.  

One great challenge for designers of anonymity sys-
tems is to aggregate predictable user behavior so that it 
appears as random noise. Any deviations from pure ran-
domness can often be exploited to undermine security 
properties of anonymity systems. There are many assump-
tions about how user behavior may deviate from random-
ness, yet precious little is known about how users actually 
operate. For example, one common “rule-of-thumb” is that 
X% of the effects come from (1-X)% of the causes – so 
called Pareto principle observable in many not only social 
types of phenomena. However, no existing analysis of 
communication patterns has been used to verify this rule 

for email communication. In this paper, we aim to provide 
an empirical basis for properties of email communications 
relevant to the designers of anonymous systems. 

To do so, we have analyzed email traffic logs from 
a large university. Our central findings are: 

 Message inter-arrival times do not follow the 
expected Poisson distribution; instead, the lognormal 
distribution fits much better. 

 Variance in message arrival time and size impact the 
anonymous sets for time-based mixes and delays 
imposed on threshold-based mixes. 

 We explore efficiency and anonymity trade-offs when 
setting message block size (for all mixes) and time 
windows (for time-based ones). 

 Most users balance their messages across recipients, 
but a minority of users does concentrate their 
messages to a few recipients. 

2. Goals of the Analysis 
We obtain anonymized logs from a main SMTP 

server dispatching emails for four faculties of a huge uni-
versity. These faculties do not have their own SMTP 
servers and instead rely on the central university computing 
services. There are approximately 790000 records (email 
messages) in our log file. Most of the analysis was carried 
out on the set of 790000 message records as all these mes-
sages would be anonymized and delivered by an anonymity 
system, unless restrictions on data bandwidth are enforced 
to decrease computational requirements of the anonymity 
system. 

Analysis targeting user behavior was performed on 
the subset of messages not marked as spam, which 
composes about 60% of the whole set. The low level of 
spam in the dataset is caused by an application of gray-
listing techniques preceding the data collection. The spam 
marking is very effective, and the correctness is such that 
the number of wrongly classified spam messages is 
negligible with respect to the total number of messages in 
the data set. 

We hoped to obtain the following information:  

 Message arrival times – not only the elementary prob-
ability distribution of message time arrivals but also 
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aggregated information useful for design of anonym-
ity systems, such as number of messages routed 
within time intervals of certain lengths. 

 Number of messages sent by individual users – right 
now, we can only speculate on the characteristics of 
‘typical’ targets for traffic analysis. It could be some-
one sending a couple of messages per month or 
a regular sender of emails. We do, however, expect 
typical user behavior to be worth identifying. 

 Size of email messages – this not only impacts the 
load of the eventual anonymity system, but also influ-
ences how much useful information a passive adver-
sary can obtain through monitoring the anonymity 
system. 

We would like to point to a previous work of Diaz et al. 
[6] that covered some of the goals listed above. There 
were, however, several limitations of the results that we 
believe to have mitigated due to a different approach. We 
use a general email traffic data and we try to find out 
what would be the impact of global deployment of ano-
nymity systems, e.g. on SMTP servers. The approach 
eliminates the problems with unpredictability me others, 
as mentioned further.  

Our approach allows predicting achievable properties 
of anonymity systems, as it highlights several aspects of 
email traffic that have not been analyzed yet. Also, it shifts 
the focus from scenarios with very low traffic to real-world 
scenarios, where the main problems start appearing in 
relation to the users’ behavior. 

3. Analysis 

3.1 Message Inter-Arrival Times and Sizes 

We first study what we anticipated to be a quite un-
controversial and fully expected result: the distribution of 
arrival times of email messages. One would expect that 
arrival time would be best fitted with a Poisson distribu-
tion, as has been assumed in the literature when designing 
mixes [10] as well as attacking them [4]. However, email 
inter-arrival times from our sample (messages of all users 
combined together) are not consistent with a Poisson dis-
tribution (the same result appears in [6]). Instead, there is 
great variation in arrival times, including delays up to 45 
minutes! The tail of the distribution is much longer than for 
any Poisson distribution. It is not clear, whether the main 
reasons for the skewed distribution are the traffic variations 
or dependencies between email messages. 

Using maximum-likelihood estimation, we attempted 
to fit the arrival times to a number of distributions. The 
best-performing distribution is a lognormal distribution, 
a skewed distribution which accounts for longer times. 
Tab. 1 gives relevant properties of best-fit Poisson and 
lognormal distributions, along with results of the Kolmo-
gorov-Smirnov test and log-likelihood values. It seems that 

Weibull (alpha=0.61, beta=5.46) and Gamma (alpha=0.43, 
beta=19.88) distributions fit the data best. These two 
passed Kolmogorov-Smirnov tests for levels of signifi-
cance alpha=0.01 - 0.2. 
 

 Parameters Kolmogorov-
Smirnov D 

Log likehood 

Poisson λ=13.1 0.531 2.43 × 107 
Lognormal μ = 1.78,  

σ = 1.22 
0.085 6.88 × 106 

Tab. 1. Properties of best-fit Poisson and lognormal 
distribution. 

The difference in log-likelihood values implies that 
the data sample is infinitely more likely to follow a log-
normal distribution than a Poisson distribution. We must 
note, however, that even the lognormal distribution is not 
a perfect fit. Fig. 1 plots the cumulative distribution 
function (CDF) for inter-arrival times along with the fitted 
lognormal curve1. 

 
Fig. 1. CDF of inter-arrival times in seconds. 

While this result contrasts sharply with existing as-
sumptions made in the anonymity literature, similarly 
skewed inter-arrival time distributions have been observed, 
notably TCP packet inter-arrival times on routers [13]. 

Another important parameter for anonymity systems 
is the size of message blocks that are anonymized. When 
a message is larger than the block size, it must be split into 
parts that are forwarded (and anonymized) separately and 
the last block is padded with random bytes. This prevents 
traffic analysis based purely on message sizes going into 
and coming out of a mix. When the block size is chosen 
too low, messages will be split into many parts that 
(a) increase computational requirements and (b) decrease 
anonymity of users as many blocks will be routed from the 
same sender towards the same recipient. Oversize blocks 
require large padding, which unnecessarily increases the 
amount of data that must be transmitted. 

Fig. 2 plots the distribution of message sizes for mes-
sages up to 35 KB. Just as for inter-arrival times, there is 
great disparity. The average size is 35.7 KB, while the 

                                                           
 
1 Our last experiments show that Gamma distribution 

is not rejected by KS test and it fits the data even better. 
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median size is only 4 KB. However, the largest message is 
35 MB. Unfortunately, we were unable to fit commonly 
used distribution function here.2 

 
Fig. 2.  Distribution of message sizes in KB. 

Tab. 2 shows overhead in the terms of number of 
blocks to number of messages, i.e. the level of anonymity 
deterioration and communication overhead appropriate to 
different sizes of blocks. From the table, it appears that the 
exponential decrease of the number of blocks slows down 
between 30 kB and 50 kB block sizes. 
 

Block 
size (KB) 

1 10 20 30 40 50 100 

Block 
overhead 

53 5.9 3.3  2.5 2.1 1.9 1.4 

Data 
overhead 

1.0 1.1 1.3 1.4 1.6 1.8 4.6 

Tab. 2. Deterioration of anonymity v communication 
overhead. 

3.2 Time-Based Mixes: Adjusting Constant-
Size Time Windows 

Timed mixes (e.g., [10]) limit transmission delays by 
forwarding messages following the expiration of a time 
window. Hence, the rate of message transmission, along 
with its variance, affects the length the time window and 
the anonymity provided. We can explore how different 
values for the time window impact anonymity. Fig. 3 plots 
the probability distribution for the number of messages 
delivered to the SMTP server in time windows of 10, 20, 
and 60 minutes.  

For example, using a 10-minute window makes it 
very likely that fewer than 200 messages will be mixed, 
while using a 60-minute window makes 250 to 1000 mes-
sages more likely to be mixed. In other words, the graph 
reveals the probability distribution of the maximum 
achievable anonymity of users. This graph is again inter-
esting for the fact that probability distribution cannot be 
represented with any known (to us) widely used distribu-
tions with sufficient level of certainty. 

                                                           
 
2 The list of distributions we tried contains about 

dozen of the most frequently used ones 

 
Fig. 3.  Number of messages in time windows of 10, 20, and 

60 minutes. 

This information is important for users -- what would 
be their anonymity when using the mix if their behavior 
were alike behavior of average user (number of messages, 
times and days of sending emails, …). 

We mentioned that anonymity systems must normal-
ize the size of messages. This prevents linkability of sender 
and recipient based on size of messages. Fig. 4 plots varia-
tion of anonymity over time during an interval of four 
days.  

 
Fig. 4.  Real anonymity of messages for incorrectly chosen 

block size (2 KB). 

Note that the y-axis is logarithmic in scale! In addi-
tion to the maximum theoretical value of anonymity, the 
figure also plots the anonymity sets when messages are 
split into 2KB blocks (an admittedly unwise length). For 
2KB blocks, the size of anonymity sets decreases very 
significantly (more than twenty fold). Anonymity is re-
duced by one third when expressed in bits, i.e., as the loga-
rithm of anonymity set size. 

3.3 Threshold Mixes: Varying Threshold Size 
to Measure Delay 

A threshold mix is an important and popular class of 
anonymity system. A threshold mix keeps gathering email 
messages until a certain number of messages is reached. 
Time is irrelevant here and delivery time is not guaranteed 
at all. When the threshold is reached, messages are mixed 
and flushed to the next mix or to recipients. 
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Variance in message transmission manifests itself as 
changes in delay times, rather than reductions in anonymity 
as for timed mixes. Fig. 5 depicts time delays when the 
threshold is set to 128 (lower plot) or 1024 (upper plot) 
messages. Average delays are 880 seconds and 7090 sec-
onds for thresholds set to 128 and 1024, respectively, when 
averaged over number of messages, and 1450 and 10400 
seconds when averaged over time. We were pleasantly 
surprised by relatively short intervals when the delays are 
very low (well bellow 1000 seconds). These are followed 
by business hours when the time delays are somewhere 
between 3000-6000 seconds for the threshold of 1024 
messages.  

 
Fig. 5.  Delay on a mix with threshold set to 128 or 1024 

messages. 

Night hours impose the longest delays, but even these 
are only twice as long as those during business hours. The 
delays become very long for the two last days -- including 
incredible delays of over 20 000 seconds (5.5 hours). This 
is due to the fact that 7th and 8th July were bank holidays 
followed by a weekend. This graph has distorted time on x-
axis as this represents (linearly) number of messages 
received by the mix. Vertical lines mark midnights. 

Fig. 6 gives one more view to delays for threshold 
mixes: time delays during the course of a day. We are also 
interested in a similar graph for days of week but as the 
analyzed set was from the period of forty days, the results 
could get distorted by single extremes. Fig. 6 shows that 
while time of day does matter, it does not vary as widely as 
we were expecting. 

 
Fig. 6.  Delay on a mix with threshold 1024 messages during 

a day. 

3.4 User-Level Distribution of Recipients 

Distribution of messages among recipients is the part 
of the analysis that has brought the biggest surprise so far. 

We mentioned in the introduction Pareto principle 
commonly used in sociology and economics. This rule, if 
true, would state that e.g. four fifths of each user's mes-
sages are addressed to only one fifth of the user's commu-
nication partners. This was an expectation we were not 
able to confirm. What we have found instead, was a linear 
function mapping the proportion of recipients to the frac-
tion of messages. This is not to say that all users are so 
balanced in disseminating their communications. While the 
average user respects linearity, a minority of users do 
concentrate their messages on a few recipients. Trying a bit 
harder, we were able to break linearity by carefully select-
ing a subset of users but we could never approach e.g. 
80/20 rule. 

Fig. 7 shows the distribution of messages among 
recipients, selecting only users who send three to five times 
more messages than their total number of recipients. At the 
same time, a minimum number of recipients are required.  
Even such a crafted selection ensures only a 67/33 or 60/40 
rule. 

 
Fig. 7.  User-level distribution of messages among recipients. 

Notice the slow take off of the graph. This is due to 
small number of users sending messages to a high number 
of recipients so the aggregates for less than 10% of recipi-
ents are lower than expected. 

Fig. 7 presents an aggregate measure of the distribu-
tion of messages to recipients, so it would be a misinter-
pretation to suggest that all users evenly distribute 
messages among recipients. We more closely examine 
behavior of particular users in Fig. 8. This graph shows the 
number of recipients per user for particular x fractions of 
top messages (x=0.2, 0.3, and 0.4) from Fig. 7. The left-
most line shows fraction of all emails that are addressed to 
20% of number of recipients per user for particular frac-
tions of top messages. 

The graph contains distribution for users who sent at 
least 15 messages, which is a small portion (302 to be pre-
cise) of all users. One can see that there is only a small 
fraction (less than one fifth of those 302) of users whose 
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messages are spread really non-linearly among their recipi-
ents. For instance, for the middle 30% graph, around 20% 
of users distribute their top 30% of messages to at least 
50% of their total recipients. Furthermore, only a few users 
(around 1%) distribute 20% of their messages among 80% 
of users. This graph demonstrates that while the average 
distribution of messages remains linear, a small number of 
users do exhibit the kind of concentrated message patterns 
which could be exploited by traffic analysis. 

 
Fig. 8.  Analysis of user behavior for addressing 20, 30, and 

40 % of emails. 

Fig. 8 is affected by rounding errors. When we use 
exact numbers then 174 users out of 302 from the plot sent 
exactly one message to each of their recipients (through the 
university SMTP server). It means that more than 50% of 
these users would still be immune to any intersection 
attacks after 40 days of observing all the email traffic on 
our SMTP server. 

4. Impact on Anonymity Systems 
We have introduced some interesting results of an 

email traffic data analysis. Let us now elaborate more on 
their importance for the design and implementation of 
anonymity systems. 

4.1 Provided Anonymity 

Each mix has a theoretical upper bound for the 
anonymity level provided. The difference between this 
upper bound and the real anonymity depends on the users' 
behavior. 

The simplest aspect is the sizes of messages being 
sent through a mix and their comparison to the size of 
message blocks processed by the mix. We would like to 
see as few messages being split as possible, while limiting 
increase in the volume of the transmitted data. The result in 
section 3.1 shows that the number of blocks per messages 
decreases exponentially while the volume of the data 
increases linearly in the mix block size. This allows to 
increase the mix block size e.g. from 50 kB up to 100 kB 
with the data “overhead” going up from 80% to 170%. 

Kesdogan et al. [10] prove optimality of exponential 
distribution for delay of messages in Stop-and-Go mixes 

assuming M/M/∞ queuing system with Poisson distribution 
of message arrivals. We show that this assumption is not 
true and as a result, such a mix will not mix the messages 
perfectly, and the anonymity provided will be lower than 
expected - the difference is however unclear in the 
moment. 

We used the distribution of message sizes to compute 
the optimum mix block size, but there is more to be said. 
We have shown that although the total number of messages 
larger than a megabyte is very low, messages of up to tens 
of megabytes happen to appear regularly. Such a message 
can cause an effective (n-1) attack on the mix. Obviously, 
an attack may let such messages appear when most 
convenient. 

Another interesting aspect affecting anonymity of 
users is the distribution of messages among users. The data 
set covering 40 days of email traffic contains messages to 
over 102 thousand recipients. However, only 7700 recipi-
ents received 10 email messages or more, covering almost 
20% of all the traffic. 

On the side of senders, only 2% of non-spam users 
sent at least 10 messages. This number increased to 8% in 
a subset of internal users (the data set contains all their 
email traffic). Local static attackers controlling “random” 
mixes would use the former number, while a dynamic local 
attacker controlling adaptively chosen mixes - closest to 
the selected victim - would use the latter one. In both cases, 
however, a large majority of users would have to sustain 
a long-term (several months) traffic analysis attack to lose 
their privacy. 

The last finding in this section relates to the behavior 
of users. We have shown that distribution of recipients is 
far from the expected Pareto principle. When we analyzed 
behavior of users who sent more than 500 messages (108 
in total), two thirds addressed their messages to only one 
recipient. The analysis further showed that the distribution 
of messages according to e.g 80/20 rule is far from reality. 
This again potentially influences results of statistical traffic 
analysis attacks. 

4.2 Delivery Delay Variation 

Timely delivery of messages is important factor from 
user's perspective, especially if the anonymity technologies 
should widespread. We show that there is not that much 
difference in the amount of traffic throughout the day, but 
the variation is very substantial between work days and 
weekends (particularly when combined with bank holi-
days). There seems to be another open question. If it is 
possible to sacrifice anonymity provided by mixes during 
low-traffic periods because of different traffic patterns? 

4.3 Statistical Disclosure 

Statistical disclosure attacks are very simple but also 
very powerful attacks against privacy technologies. There 
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are several interesting aspects influencing efficiency of 
these attacks that we have identified during our analysis. 

We have not found, for a large portion of users, any 
analytical statistical distribution that would describe distri-
bution of messages onto recipients. 

 Many users send messages in batches - especially 
users with higher number of different recipients. The 
average number of messages within one mixing win-
dow of 100 messages went easily over 5. The reason 
seems to be a use of off-line emailing. We believe 
that it is another aspect of users' behavior whose ef-
fects on statistical attacks are worth a further research. 

 Even though the assumptions of uniform message dis-
tribution by Serjantov et al [15] do not hold in real-
world traffic, it is very easy to create a general traffic 
profile that can be successfully used for automated 
statistical disclosure attacks. 

 Several experiments we have conducted indicate that 
the false positives start appearing much faster than 
false negatives. In other words, the attacker can sub-
stantially limit the set of recipients with a high prob-
ability that actual recipients will be picked. 

We have run several simple experiments to verify re-
sults for statistical disclosure attack by Danezis [3] (later 
extended by Dingledine et al. [11]). The basic equation 
estimating the amount of data for a successful attack 
against “Alice” is (95% confidence): 

 

where N is the number of recipients, m the number of the 
Alice's recipients, b the size of the mix's pool, and t is the 
number of mix rounds that must be collected. 

The simple experiments we did were using mix of the 
size b=100. N was than in the region of 5000, and m lower 
than 50. The large N and relatively small b allows us to 
simplify the equation: 

  

The first square root is around 0.15, while the second 
is 0.15 for just one recipient (which does not sound right), 
and then monotonically decreases from 0.72 down to 0.14 
(0.22 is for 40 recipients) - the sum is therefore between 
0.86 and 0.28, and the evaluation of the whole equation is 
in Tab. 3. 
 

m 1 2 3 4 5 6 7 8 9 13 20 
t 1 12 14 22 35 45 57 72 84 142 295 

Tab. 3. Number of messages needed for a successful attack. 

The experiments we have carried out suggest that the 
attack complexity is undervalued for low numbers of re-

cipients, while over valued when more recipients is to be 
identified. The non-uniform distribution of messages also 
causes different anonymity levels for differently “popular” 
recipients. We believe that there the attack can be elabo-
rated and made more efficient with the use of real-world 
data. 

4.4 Open Questions 

Parts of this paper's analysis elaborate on performance 
properties of mixes. These mixes were not applied on the 
data in real time but we have instead written a simulator of 
a mix system. 

The analysis assumes that there is a mix server 
deployed on the SMTP server that has produced the traffic 
data. We have analyzed two basic constructions of mixes: 
with a fixed time delay and with a fixed pool size. 

There are few open questions which we can't answer 
yet. The first is question about emails written as replies to 
previous emails. Deployment of a mix would change time 
line of this part of traffic. The significance of this problem 
is very hard to estimate as SMTP servers do not store ``In-
reply-to'' headers and it is unclear how would delay of the 
responses influence results of our analysis. 

Another question is relevance of data. Traffic from 
university may suffer from oscillations like holidays, 
weekends, and so on. Obviously, it would be slightly more 
interesting to analyze data about email traffic of common 
users but it is very hard to get these. On the other hand, we 
have been lucky in a sense, because the collected data 
come from non-engineering departments and the users 
reflect general population much better than would users 
with IT background. 

The last question is related to the validity of the data 
set because of an incredibly high number of users who sent 
very few messages. This was a surprise for us as well and 
we have verified this on a data set covering a fourteen 
months' period. The distribution of messages among users 
was invariant. 

5. Conclusions 
The paper presents some interesting properties related 

to behavior of users of electronic mail. We believe that 
although the analyzed data set is not final, it can help 
inform how to set several parameters of anonymity systems 
for email traffic. We have also explored how variation in 
message inter-arrival times and sizes impact delays for 
threshold mixes and variation of anonymity provided by 
timed mixes. We anticipated there would be substantial 
differences in data traffic throughout a day or a week. We 
show that variation exists but the differences are quite 
comparable with random variations that appear regardless 
on typical user behavior (especially with smaller thresholds 
and shorter intervals for collecting messages). 
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