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Abstract. In the paper, we present a system designed for 
detecting keywords in telephone speech. We focus not only 
on achieving high accuracy but also on very short proc-
essing time. The keyword spotting system can run in three 
modes: a) an off-line mode requiring less than 0.1xRT, b) 
an on-line mode with minimum (2 s) latency, and c) a re-
peated spotting mode, in which pre-computed values allow 
for additional acceleration. Its performance is evaluated 
on recordings of Czech spontaneous telephone speech 
using rather large and complex keyword lists. 
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1. Introduction 
Keyword spotting (KWS) has become an important 

branch of speech technology. It is applied mainly in situa-
tions where a large amount of spoken documents must be 
searched to learn whether they contain some specific 
words. The fast detection of these words (and information 
about their exact location) eliminates a lot of human work 
in such tasks like audio data mining, named entity search, 
and, in particular, in the state security domain. 

In general, there are two main approaches used for 
keyword spotting [1], [2]. The most natural one consists in 
performing complete transcription of the documents (using 
the best available large-vocabulary speech recognition 
system) first and then detecting the words of interest in the 
text version of the documents. Obviously, this approach 
works well in situations where a) speech quality and 
speaking style allow the recognizer to produce text with 
minor errors only, b) the searched words are in the recog-
nizer’s vocabulary, c) a longer processing time does not 
matter. (A good example is, e.g. data mining in broadcast 
news [3]).  

In typical security tasks, however, these assumptions 
often do not apply. Here, one of the major types of ana-
lyzed documents is a telephone call. It is a narrow-band, 
low-quality audio signal with speech that is usually infor-
mal (with respect to lexicon, grammar and pronunciation) 
and highly spontaneous with frequent artifacts like hesita-

tions, repeated words or interruptions. For this type of 
spoken data, an approach that uses smaller vocabularies 
(usually made of the searched words only) and so called 
fillers (that capture and cover the rest of speech) is more 
suitable [4]. 

In this paper, we describe the system we developed 
for detecting keywords in telephone conversation. The 
main requirements were as follows: 

 Primary language of the calls is Czech, though 
foreign words (especially names) can occur and can 
be searched. 

 The lists of searched words may include hundreds of 
words and since Czech is an inflected language, the 
actual list size can grow up to thousands of items.  

 The performance should be as high as possible, 
allowing individual setting to prefer either higher 
detection rate or lower false alarm rate. 

 The processing time should be as short as possible 
(a fraction of real time (RT), possibly < 0.1 RT). 

In the design, we applied the approach based on the 
word and filler model, which is the only one that can fulfill 
the last mentioned requirement. Moreover, we focused on 
proposing such a solution than can run not only in the off-
line mode, but also in an on-line mode (e.g. for direct 
monitoring of a telephone line with an immediate alarm 
triggered by one of the list words). In the design, we have 
included also an option that makes the repeated search in 
the same audio data faster. This is possible by pre-
computing and storing some of the values used by the 
speech decoder. 

2. KWS System and Its Decoder 
The KWS system consists of several basic modules. 

The audio input module performs initial preprocessing of 
speech signal that can be stored (or provided from a line) in 
different formats. The output from this module is a classic 
8 kHz 16-bit PCM-coded signal. In case of a stereo-
recorded call, two separated signals are created. The next 
module makes signal parameterization, computes feature 
vectors, normalizes them inside a sliding window, and also 
uses them to decide the gender of the speaker. The feature 
vectors and the information about the gender are passed to 
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the decoder. It selects the appropriate acoustic model, 
performs speech decoding, provides hypotheses about the 
presence of keywords in the signal, and quantifies their 
scores. The last module takes these hypotheses, compares 
them to pre-set thresholds and produces an output list with 
detected words, their time markers and confidence values. 

In the next text, we describe the decoder, which is the 
core component of the system, in more details. We focus 
mainly on those parts that have been optimized for speed. 

2.1 KWS Decoder 

The decoding is based on the well-known Viterbi 
algorithm. We have utilized its fast implementation created 
for the LVCSR system [5]. Hence, the KWS system can be 
used even for list with thousands of keywords. 

The decoder operates with a looped network of units 
u that are either keywords w or fillers v. Both are handled 
in the same way. The fillers are represented by models of 
all 41 Czech phonemes and 7 non-speech events (silence 
and various noises). The words use the same phoneme 
models. These are 3-state context-independent HMMs with 
a large number of Gaussians per state. In our implementa-
tion, we omit transition probabilities, which makes 
computation faster without any noticeable impact on the 
accuracy. 

The elementary operation in the Viterbi decoder is the 
propagation of the accumulated scores to adjacent states. 
At each time (frame) t, new accumulated score d is 
computed for each state s of unit u by adding log likelihood 
L of feature vector x(t) to the higher of the scores in the 
predecessor states: 
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To decode the sequence of units, we are interested mainly 
in scores D achieved at time t in last states se of the units 
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Furthermore, we need to register time T(u, t) when the 
given instance of unit u started.  

To close the loop, at each time t we compute value  
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and propagate it to initial states sb of all units: 
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To get acoustic score S of unit u we have to subtract the 
two accumulated scores: 
 )1),((),(),(  tuTDtuDtuS best   (5) 

For each word w, we have to compare its score S(w,t) 
with score Sf(vconc,t) that would be achieved by the best 
concatenation of fillers starting in time T(w, t) and ending 
in time t. Basically, this score can be computed by applying 
the Viterbi algorithm to the given time span and to the 
filler models only. (In practice, it can be approximated by 
applying (5) to the best filler model ending in time t.) 
Then, we define normalized acoustic score SN as: 

  ),(/),(),( tvStwStwS concfN  .  (6) 

This normalized score will reach its maximum value 1 
only if keyword w gets the same acoustic score as the 
concatenation of the fillers made of the word’s phonemes. 
In this case, we can be sure that the keyword was detected 
correctly. In other cases, SN  < 1 and the probability of the 
correct detection decreases. The proper threshold for 
rejecting/accepting a keyword must be set experimentally 
on development data.  

2.2 Speed Optimization of Decoder 

It is known that the major bottleneck in the decoding 
procedure is the computation of likelihoods L occurring in 
(1). In a typical KWS system, this may take up to 90 % of 
the total processing time. In our system, we use the fast 
implementation whose basic ideas are described in [6]. 
Instead of summing contributions of all the Gaussians in 
the state, we take the likelihood of the best one, and instead 
of summing over all the features in the innermost loop, we 
apply an early break whenever it is possible. This scheme 
reduces the likelihood computation to almost one half.  
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Fig. 1. Network of key-words (w) and fillers (v). Denoted are word-end accumulated scores D, starting times T, likelihoods L, and 

values dbest. The values in the rectangle are word independent and can be used in repeated runs with different words lists. 
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In [6] we also describe our implementation of the 
efficient beam search, whose thresholds for each frame t 
are derived from values  dbest:   
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As we show in Section 4, the off-line version of the 
KWS system that utilizes the above optimizations can run 
faster than 0.1 RT. Though, in a special case, the execution 
time can be reduced even further. It is the case when the 
same audio data is searched repeatedly. In the security 
domain, it happens quite often that archived records are 
analyzed not only once but several times, and usually with 
different keyword lists. 

In this special case, we can save a large portion of 
repeated computation if we store the values that are key-
word independent and – at the same time - critical for the 
decoder’s performance. The list of these values is high-
lighted in Fig.1. It consists of values D and T (for fillers), 
likelihoods L and value dbest – for each frame of speech. 
Usually, due to pruning, not all of them are actually com-
puted and thus not all of them need to be stored. Even if we 
store all, the maximum required space would not be large: 
48 + 48 + 48 x 3 + 1 = 241 numbers (964 bytes) per frame. 
Compared to the classic PCM coding (160 bytes per 10-
ms-long frame), this is only 6 times more data. 

If we store these pre-computed values in special files 
and utilize them in repeated spotting sessions, we com-
pletely eliminate computation of a) signal processing, 
b) likelihoods, c) fillers, and d) beam search parameters. 
The repeated search thus consists only in a simple Viterbi 
recombination and summation of existing values, and in 
score normalization. Our experiments showed that in this 
case, the KWS system performance could be 2 – 4 times 
faster than the standard approach. (The actual acceleration 
factor depends on the keyword list size.) 

3. Signal Processing and Acoustic 
Model 
In this section, we briefly describe the acoustic part of 

the KWS system.   

3.1 Signal Processing 

The features used in the system are Mel-frequency 
cepstral coefficients. The set of 13 MFCCs (including c0) 
is extracted from the signal using 25 ms window and 10 ms 
shift. To compensate for possible channel and speaker 
change effects, we employ the CMS (cepstral mean sub-
traction) technique. It is applied locally within a 400 frame 
sliding window and only the central frame is adapted. The 
feature vector is further augmented by the 1st and 2nd de-
rivatives (∆+∆∆). Finally, the HLDA transformation [7], 
[8] is applied to reduce the original 39-feature vector to 

a 26-feature one. This makes the decoding faster and also 
yields slightly higher accuracy. More details about the 
feature selection and comparison can be found in 
Section 4. 

3.2 Acoustic Models 

A speaker-independent (SI) and two gender-depend-
ent (GD) acoustic models were trained on the available 
corpus of Czech telephone speech. This (rather heteroge-
neous) database contains 37.5 hours of read speech, 25.3 
hours of conversational speech of radio broadcast callers 
and 43.8 hours of spontaneous speech. The database is well 
balanced with respect to the gender of speakers (52 % 
male, 48 % female speech). This reasonably large amount 
of data (more than 50 hours for each gender) allowed us to 
train gender-dependent acoustic models. The HLDA trans-
formation was estimated for each model while sharing the 
same training data. All the 3 types of the acoustic model 
consist of 48 3-state HMMs with 96 Gaussian components 
per state. 

3.3 Gender Identification 

The GD models are preferred because they contribute 
to slightly higher recognition accuracy. Obviously, their 
usage requires that a proper gender identification module is 
included. Ours is based on Gaussian Mixture Models 
(GMMs) operating with the same MFCC features used for 
speech recognition. The system design reflects the needs to 
process rather long audio streams (up to several hours), in 
which speakers can change frequently. Hence, the gender 
identification is performed locally, within a 400-frame-
long sliding window (4 seconds). The implementation of 
the system allows for switching between the 2 acoustic 
models for every frame without any delay. However, if the 
models have tendency to switch frequently (in segments 
shorter than 1 s), it means that the gender is not identified 
reliably and then the SI model is employed instead.  

3.4 Enhancing the Robustness 

Continuous audio streams recorded via a telephone 
line monitoring system contain a lot of various non-speech 
events, e.g. DTMF sounds, line busy tones, music in back-
ground, etc. As the KWS system tends to generate a higher 
number of false alarms in non-speech regions, a speech 
activity detector must be included. In our system, we do it 
by extending the gender identification module by adding 
a third GMM tailored to the non-speech events.  

Another source of performance degradation is the 
over-excitation of the signal. A set of heuristic rules based 
on the energy of the signal in the time span occupied by the 
detected keyword is therefore used in the decision making 
strategy. This also eliminates the false alarm detections in 
the silence regions.  
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4. Experiments 

4.1 Evaluation Metrics 

The performance of the KWS system is evaluated by 
two widely used metrics – Figure of Merit (FOM) and 
Equal Error Rate (EER). We also use a Receiver Operating 
Characteristic (ROC) curve in some experiments. The ROC 
curve shows the trade-off between the detection rate (DR) 
and false alarm (FA) rate depending on the value of the 
decision threshold. Values DR and FA are given as 

 100[%] _  occurkwcorrect NNDR , (8) 

  kwFA NDurNhkwFA ]//1[  (9) 

where Ncorrect represents correct detections, Nkw occur is the 
number of all occurrences of the keywords in reference 
transcriptions, NFA is the number of false alarm detections, 
Nkw is the number of keywords, and finally Dur is the over-
all duration (in hours) of all test recordings. The FOM 
value is defined as the average value of detection rates 
corresponding to FA values in the range from 0 to 10. The 
EER value reflects the situation when the number of 
missed (not detected) keywords is equal to the number of 
incorrect detections. 

4.2 Evaluation Data 

A series of experiments was performed on a portion 
of about 2 hours of data drawn from the spontaneous 
speech part of the aforementioned database. These data 
were excluded from the training process. The test 
recordings were excerpts from spontaneous conversations, 
and each contained one utterance spoken by a single 
speaker. A precise, human-made and time aligned 
transcription was provided for each of the test recording. 

Two distinct keyword sets were prepared for the 
evaluation. The first set (KWSET1) was used primarily for 
system development purposes and it was used in all the 
reported experiments if not stated otherwise. The set 
contained 570 words. These words were chosen to be 
rather long (6 to 15 phonemes) and mutually dissimilar 
(differing in at least 3 phonemes), in order to eliminate 
wrong evaluation caused by possible mistakes in reference 
transcriptions. The second keyword set (KWSET2) 
represents a more challenging task. Its list contains 508 
shorter words (4 to 12 phonemes), some being acoustically 
very similar each other (e.g. “jedna”, “jedno”, “jednu”).  

4.3 Tests with Different Acoustic Features 

Three types of acoustic features were examined in the 
initial experiments – MFCC, MFCC with HLDA transfor-
mation and Perceptual Linear Predictive (PLP) [9] coeffi-
cients. In Tab. 1 we summarize the achieved results in 
terms of FOM and EER values and processing time. The 

latter is stated as a real-time factor measured on modern PC 
processor Intel Core2Duo E6750 (single core in use). 
 

 FOM [%] EER [%] Time ×RT 

39 MFCC (∆, ∆∆) 80.7 39.6 0.18 

39 PLP (∆, ∆∆) 80.5 43.2 0.18 

39 MFCC (∆, ∆∆) + HLDA 81.5 38.7 0.13 

Tab. 1. Comparison of results achieved for various acoustic 
parameter types. 

When comparing the MFCC and PLP features, we 
can notice a slightly better accuracy provided by the former 
ones. The use of the HLDA transformation yielded another 
small improvement in performance and also a significant 
reduction of processing time - about 25 % due to the lower 
feature vector dimension. 

4.4 Processing of Long Audio Streams 

In this section, we want to highlight the effect of the 
local application of both the CMS and the GD acoustic 
models. The short (sentence-long) segments used in the 
previous experiments do not reflect the situation when 
a long continuous audio stream from a telephone line is to 
be monitored. In practice, this type of usage is quite 
frequent and it is more challenging because the assumption 
about the same channel characteristics and a single speaker 
often does not apply.  

Hence, to test the robustness of our system in these 
conditions, we created an artificial 2-hour-long stream by 
concatenating all the recordings used in the previous 
experiment. The comparison of the results presented in the 
first line of Tab. 2 to those in Tab. 1 clearly demonstrate 
that a severe degradation of the performance occurs when 
the CMS technique and GD acoustic model is applied 
globally.   

In order to cope with the varying acoustic conditions 
in the audio stream we introduced a “floating CMS” 
scheme. It consists in the local application of the CMS with 
the cepstral mean computed within a sliding window of 
a fixed length. (The choice of 400 frames was found as 
optimal in preliminary experiments.) The application of 
this locally estimated CMS and the usage of the SI acoustic 
model yielded a reasonable performance gain, as it can be 
observed from the second line in Tab. 2. Though, these 
results were still significantly worse compared to those 
reported for segmented recordings. A slight improvement 
was achieved by the utilization of the acoustic model 
formed by merging the male and female model into 
a super-model with the double number of Gaussians. How-
ever, the best results were achieved when the same sliding 
window was used both for the CMS as well as for the gen-
der identification and the proper gender model selection. In 
this case, the results (presented in the fourth line of Tab. 2) 
are almost comparable with those in Tab. 1. In Fig. 2 we 
also show the ROC curves for all the experiments. 
 



RADIOENGINEERING, VOL. 18, NO. 4, DECEMBER 2009 669 

 FOM [%] EER [%] 

global CMS, global GD models 62.8 57.0 

local CMS, SI model 72.4 50.1 

local CMS, merged GD models 72.4 48.6 

local CMS, local GD models 78.3 41.9 

Tab. 2. Impact of local application of CMS and local selection 
of GD acoustic models in processing of long streams. 

 
Fig. 2. Impact of local application of CMS and local selection 

of GD acoustic models in processing of long streams. 

4.5 Speed Tuning 

Tab. 3 shows the results achieved by applying the 
speed optimization techniques described in Sections 2.1 
and 2.2. In the baseline system, we used the decoder that 
had been previously optimized for LVCSR tasks and which 
is capable of real-time operation with 300K vocabularies. 
By optimizing the decoder for the KWS task and by in-
cluding the fast likelihood routine we were able to save 
more than 50 % of computation demands. Recently, with 
keyword lists that have size of several hundreds of words 
(like the sets KWSET1 and KWSET2) the complete proc-
essing time is about 0.06 RT. In the last line of Tab. 3 we 
also present the time needed for the repeated run of the 
keyword spotter in case when the selected values are pre-
computed and stored as it is explained in Section 2.2.  
 

 FOM [%] EER [%] Time ×RT

Baseline implementation 81.5 38.7 0.13 

+ fast likelihood computation 81.1 38.5 0.06 

 Repeated run with pre-computed data 81.1 38.5 0.02 

Tab. 3. Impact of proposed speech optimization techniques. 

4.6 More Challenging Keyword List 

All the previous experiments were performed using 
the keyword set KWSET1. Fig. 3 provides a graphical 
comparison of these results with those achieved for key-
word set KWSET2. Here, we can observe the strong 

impact of the type of the searched keywords on the system 
performance. The KWS strategy that is based on acoustic 
information only can hardly distinguish between words that 
are phonetically very similar (or may be even homo-
phones). These errors could be eliminated only by taking 
the sentence context into account in the same way as it is 
done in large vocabulary continuous recognition. The 
LVCSR approach, however, is much slower and in fact its 
performance is also significantly degraded in situations 
where spontaneous speech is transmitted by low-quality 
telephone line.  

When we analyzed the results from the experiments 
with the KWSET2, we found out that the main source of 
errors was significantly high percentage of false alarm 
detections for short words (3 to 5 phonemes, many of them 
differing only in a single phoneme). This is because the 
scores for short words, computed over a short time span, 
are very similar, and it is not easy to set up a fixed or flexi-
ble threshold for their acceptance or rejection. So, the cru-
cial problem of the very short words is not to detect them 
but to reduce the occurrence of false alarms at the same 
time. 

 
Fig. 3. Comparison of ROC curves for two sets with different 

types of searched words. 

5. Conclusions 
In this paper we present the methods used for the 

development of a practical keyword spotting system. The 
system was designed for Czech language but all its 
modules, except of the acoustic model trained on Czech 
phonemes, are language independent. We focused mainly 
on the optimization of speed of the system because in 
applications, like telephone call monitoring for state 
security services, short processing time is one of the main 
requirements.    

Our system proved its capability to operate faster than 
0.1 RT with a vocabulary containing about 600 keywords. 
We showed that in the off-line mode, its response can be 
further increased in situations when recordings are 
searched repeatedly with different keywords or different 



670 J. NOUZA, J. SILOVSKY, FAST KEYWORD SPOTTING IN TELEPHONE SPEECH 

setting (e.g. with a larger or smaller beam width). In this 
case the system utilizes auxiliary files with pre-computed 
values of likelihoods, scores and time markers. Moreover, 
the system can be used also in an on-line mode. The signal 
preprocessor and the decoder are designed in the way that 
the detected keyword candidates can be output with a short 
delay after they occur. In the current implementation, this 
latency is 2 seconds and it is determined mainly by the size 
of the sliding window used for the cepstral mean normali-
zation and gender identification.   

We also demonstrate how the local application of the 
CMS and the local choice of the proper GD/SI model 
enhance the robustness of the system against varying 
acoustic conditions and speaker changes in continuous 
recordings from a telephone line.  
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