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Abstract. An original approach to the time-domain multi-
criteria optimization of antennas is presented. For a given 
excitation pulse, the time-domain objective function takes 
the “time-domain impedance matching”, distortion of 
responses at the feeding point and in a desired radiating 
direction (with respect to the excitation pulse), and the 
radiated energy in the desired direction into account. The 
objective function is tested on the optimization of a bow-tie 
antenna using the particle swarm optimization. The 
proposed approach is suitable for the design of broadband 
antennas. 
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1. Introduction 
The time-domain integral equation (TDIE) method 

has become a popular tool applied to the numerical 
analysis of electromagnetic radiation and scattering [1]-[4]. 
Essentially, if broadband information is desired, the time-
domain solution of electromagnetic problems is more 
efficient than the frequency-domain one. For the analysis 
of antennas in the transmitting mode, the structure is 
excited by a desired voltage pulse at the feeding point of 
the antenna in order to find the transient response of the 
current. In case of antennas in the receiving mode, the goal 
is the same, but the whole structure is excited by the 
incident wave. 

Due to the frequency-domain nature of antenna 
parameters, time responses of computed quantities have to 
be converted to the frequency-domain, where the objective 
function is formulated. However, in order to avoid the 
Fourier transformation of the time response at each step of 
an optimization procedure, the objective function is more 
conveniently defined in the time-domain. Following this 
principle, the objective function is formulated in [5] in the 
time-domain, taking only matching of an antenna to the 
desired excitation pulse into account. Other important 

phenomena (such as the influence of a feeding line of an 
antenna, the antenna radiation), are not considered. 

In this paper, the multicriteria objective function for 
the optimization of antennas directly in the time-domain is 
discussed. The proposed approach is suitable for the design 
of broadband antennas. 

2. Time-Domain Parameters 
In case of broadband or pulse radiation antennas, an 

antenna should be matched to the feeding line, radiate 
a waveform similar to the excitation pulse, and most 
energy should be radiated in a direction where the pulse is 
of the desired shape. For the proper optimization in the 
time-domain, all this facts should be considered. 

An antenna is matched to the feeding line if no energy 
is reflected back from its feeding point. In the time-
domain, energy propagating forward and backward along 
the feeding transmission line can hardly be distinguished. 
Moreover, an antenna is usually analyzed without the 
feeding transmission line. 

The time-domain condition that no energy is reflected 
from the feeding point of the antenna (in case the antenna 
is analyzed without the feeding line) can be accomplished 
if: 

1. The shape of the excitation voltage pulse U(t) at the 
feeding point is the same as the current response I(t). 
Then, the antenna is able to accept all the energy of 
the excitation pulse. According to the systems theory 
[6], the transfer function of such kind of systems is a 
constant, at least for the most important part of the 
spectrum of the excitation signal. In the case of the 
antenna, the transfer function is equal to the input 
admittance of the antenna. Since the location of the 
excitation pulse and the response is the same, the 
admittance is then real. However, the input 
admittance of the antenna can be different from the 
admittance of the feeding line. 

2. The input admittance of the antenna at its feeding 
point is the same as the admittance of the feeding line. 
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For checking the similarity between the excitation 
voltage pulse U(t) and the computed current response I(t) 
at the feeding point, the normalized cross-correlation 
function UI can be used. In [7], this quantity is referred to 
as fidelity, and is defined as the maximum of the 
normalized cross-correlation function UI between two 
pulses U(t) and I(t) 

 

max

max
)0()0(

)(














IIUU

UI
UI

t
FF




  (1) 

where UU(0) and II(0) are the auto-correlation functions 
of the pulses U(t) and I(t), respectively. In our case, the 
fidelity should not be the maximum of the cross-correlation 
function UI, but the normalized cross-correlation function 
for t = 0 s, since both pulses are computed at the same 
location. Therefore, this quantity is denoted to as the 
fidelity factor at the feeding point FF0. Substituting t = 0 s 
in (1), we arrive at 
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If FF0 is 1, then the shapes of both pulses are the same, and 
the antenna is “matched” to the excitation pulse. Other-
wise, the value FF0 is smaller than 1. In addition, we 
removed the absolute value applied on the cross-correlation 
function UI, since the real part of the input admittance of 
the antenna is positive. 

The next step is represented by the computation of the 
input admittance. Upon going back to the frequency-
domain, the following idea is accounted for: as long as the 
important components of the excitation pulse are within the 
frequency range limited by the frequencies 1 and 2, the 
spectrum of the current response is also in this range. For 
FF0 = 1, the transfer function Y (in this case, the input 
admittance) is constant and real and, consequently, the 
current in the frequency-domain can be evaluated as 
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where U() is the spectrum of the excitation signal U(t) 
and I() is the spectrum of the computed current response 
I(t). Applying inverse Fourier transform to (3), the input 
admittance follows and it reads  
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Equation (4) is valid for FF0 = 1 only, and for instants t 
where U(t)  0 and I(t)  0. During optimization, FF0 does 
not equal 1 and the input admittance of the antenna is not 
constant and real, implying that (4) is not valid. For these 
reasons, we introduce a time-domain average input admit-
tance Yavrg, which is defined as an average of N ratios of the 
current and the voltage values at the time tn 
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At points tn the relative error of the shape of pulses is 
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where  
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is smaller than the desired relative error d. Thus, the 
number of the current and the voltage values at the time tn, 
N, depends on the desired relative error d of the shape of 
pulses. An acceptable value for this error is about 5 %. 

The closer the fidelity factor FF0 is to 1, the closer the 
time-domain average input admittance Yavrg is to the real 
and constant input admittance Y. Thus, the antenna time-
domain average input admittance is an auxiliary quantity 
used in the optimization procedure only. 

In order to match the antenna to the feeding line, the 
input admittance of the line YW has to be equal to the input 
admittance of the antenna Yavrg (or, when FF0 is approx-
imately 1, to Y). To compare their similarity, the time-
domain matching factor is introduced as 
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Again, the closer this factor is to 1, the better the antenna 
matching to the feeding line will be. 

Apart from the antenna matching, the radiated 
waveform should be similar in shape to the excitation pulse 
and, moreover, most of the energy should be radiated in the 
direction where the pulse has the desired shape. Con-
sequently, we now turn to the similarity between the 
excitation voltage pulse U(t) and the radiated pulse |E (, 
, t)|, the intensity of the radiated pulse being evaluated in 
the far-zone of the antenna. In the desired direction, 
defined in terms of the elevation angle d and the azimuth 
angle d, the fidelity factor and the normalized cross-
correlation function UE can be used in the same sense as in 
[7] or, alternatively, according to (1) because the pulse’s 
location in time depends on the distance r between the 
antenna and the observation point according to the 
expression 

 

max

max
)0()0(

)(














EEUU

UE
UE

t
FE




 . (9) 

The meaning of the symbols in (9) is similar to that of 
those used in (1). Note that (9) indicates that FEmax gets 
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closer to 1 as the similarity of the pulses U(t) and 
|E( d, d, t)| increases. 

The energy radiated in the desired direction is the last 
quantity we are interested in for the time-domain op-
timization of antennas. The energy of the transient pulse in 
the direction defined by the angles ( , ) can be evaluated 
as [6] 
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Evaluating (10) for all directions (in discrete sense) and 
normalizing the result by its maximal value 
EEMax=max[EE(,)], we obtain the mean-value directivity 
pattern of the antenna 
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The maximum radiation appears in the direction where the 
value of EEnorm(, ) is 1. 

3. Time-Domain Multicriteria 
Objective Function 
In the previous section, the time-domain antenna 

parameters were described and discussed. The introduced 
parameters are now exploited for proper optimization of 
broadband and pulse radiation antennas in the time-
domain. Recall that the optimum value of all parameters 
defined in the equations (2), (8), (9) and (11) is 1. 

The multicriteria objective function can be defined in 
a straightforward way as 
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with the angles d and d corresponding to the desired 
direction in which most of the energy needs to be radiated. 
With respect to the function in (12) it is firstly noted that 
the first and the second term account for the matching of 
the antenna to the feeding line. Furthermore, the third term 
ensures that the transmitted pulse is not distorted for the 
desired direction of radiation and d and d and the fourth 
term ensures that most of the energy is radiated in that 
direction. All requirements are met if the objective function 
(12) is zero, which is the absolute minimum of this 
function. 

4. Numerical Example 
The proposed time-domain, multicriteria function is 

now used for the optimization of the simple bow-tie 

antenna [8] presented in Fig. 1. Its main design parameters 
are the length of the dipole L, the width of the feeding strip 
w, and the arm angle of the bow-tie  that will be taken to 
be the state variables in the optimization task. The 
objective is to design an antenna that is matched to a feed-
ing line with the admittance YW =10 mS in the frequency 
range from 2 to 4 GHz, which radiates the energy 
uniformly within the given frequency range in the direction 
d = 0°, andd = 0°(perpendicularly to the plane of the 
drawing in Fig. 1), and also ensures maximum radiation is 
in that direction. These demands can be accomplished by 
minimizing the objective function (12). Note that the 
demand that the antenna radiates energy uniformly within 
the given frequency translates in the relevant band-limited 
transmitted pulse not being distorted. 

 

Fig. 1. Typical bow-tie antenna and the definition of its 
parameters. 

The antenna is analyzed in the time-domain by 
applying TDIE. The body of the analyzed structure is 
modeled by triangular patches. Rao-Wilton-Glisson 
(RWG) expansion functions [11] are used as spatial basis 
and testing functions. Weighted Laguerre polynomials are 
employed as temporal basis and weighting functions. Thus, 
the marching-on-in-order scheme [2], [3] is utilized. The 
feeding edge model [9] is used for the excitation of the 
antenna. The particle swarm optimization (PSO) algorithm 
[10] uses the numerical model for evaluating the objective 
function. 

For optimization, the harmonic signal is modulated by 
the Gaussian pulse 
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where T is the width of the Gaussian pulse, c is the velocity 
of the electromagnetic wave in vacuum, f0 is the frequency 
of the harmonic signal and t0 is the time delay of the pulse. 
For the given frequency range, the pulse has the following 
parameters: U0 = 10 V, T = 2.4 ns, t0 = 2.3 ns, and 
f0 = 3  109 Hz. The pulse and its spectrum are depicted in 
Fig. 2.  
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Fig. 2. Harmonic signal modulated by Gaussian pulse a), the 

spectrum b). 

The state variables can vary in the following limits: 

L  <100 mm; 190 mm>, 

w  <5 mm; 15 mm>, 

α  <30°; 70°>. 

The desired relative error of the shape of pulses d is 
set to 5 %. 

PSO is used in its conventional form [10]. A swarm 
consists of 15 agents, and the optimization runs for 70 
iterations. The inertial weight is linearly decreasing from 
the value 0.9 in the initial iteration to the value 0.4 in the 
last one. Both the personal scaling factor and the global 
one are set to 1.49. The space of variables in the state 
vector is surrounded by absorbing walls. 

 
Fig. 3. Evolution of objective function. 

The evolution of the objective function is depicted in 
Fig. 3. For the final iteration, the objective function reaches 
the value OF= 0.0535, with the partial criterions 
amounting to |1–FF0| = 0.04498, |1–MY| = 0.0094 
(Yavrg = 9.91 mS for d = 5%), |1–FEmax(d, d)| = 0.0274 
and |1–EEnorm(d, d)| = 0. Correspondingly, the entries in 

the optimized state variables vector are: L = 112.48 mm, 
w = 13.17 mm and α = 64.27°. Obviously, most of the 
energy is radiated in the desired direction (the last criterion 
being zero). 

The transient responses of the current at the feeding 
point of the antenna and the radiated pulse in the desired 
direction, both normalized to the square root of their auto-
correlation functions at t = 0 s, are shown in Figs. 4 and 5, 
respectively. To facilitate comparisons, the excitation pulse 
is normalized in the same way as the responses. Note that 
the radiated pulse is shifted in time to the instant when the 
maximum fidelity factor FEmax between this response and 
the excitation pulse occurs. The excitation pulse, the 
current response and the radiated pulse are very similar, 
but not the same. 

 
Fig. 4. Normalized excitation pulse and current response of 

the optimized antenna. 

 

Fig. 5. Normalized excitation and radiated pulses of the 
optimized antenna. 

The computed return loss parameter S11 [8] for the 
excitation pulse and the current response is depicted in 
Fig. 6 (denoted by TD) after mapping the results to the 
frequency-domain. Overall, the optimized antenna is very 
well matched to the feeding line with the desired 
admittance YW = 10 mS, with a return loss (well) under  
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-10 dB over the complete frequency range from 2 to 
4 GHz, except for a reduced region between 2.27 and 
2.55 GHz, peaking at f = 2.42 GHz, where S11 = –8.9 dB. 

For the verification of the antenna radiation in the 
desired direction, the magnitude of the following transfer 
function is computed 
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that is normalized according to the expression 
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The normalized transfer function Knorm is depicted in 
Fig. 7 (denoted by TD). It is apparent that the minimum 
radiation corresponds to the frequency of 4 GHz, where the 
normalized transfer function is 0.28. 

 
Fig. 6. Return loss of optimized bow-tie antenna. 

 

Fig. 7. Normalized transfer function of optimized bow-tie 
antenna. 

For verification, the optimized bow-tie antenna was 
analyzed by the method of moments in the frequency 
domain [11]. The computed characteristics are denoted in 

Figs. 6 and 7 by FD. The agreement of both solutions is 
good. Note that the transfer function computed from the 
data of the frequency domain analysis is normalized to the 
maximum value of the transfer function K(f) (14).  

Based on the results, it can be stated that, overall, the 
designed bow-tie antenna offers a good tradeoff between 
good radiation properties and the impedance (admittance) 
matching in the desired frequency range. 

5. Conclusion 
In the paper, the multicriteria optimization of 

antennas is performed directly in the time-domain. The 
proposed objective function takes into account, for a given 
excitation pulse, the “time-domain impedance matching”, 
a distortion of responses at the feeding point and in a 
desired radiating direction (with respect to the excitation 
pulse), and the radiated energy in the desired direction. The 
objective function was used for the optimization of a bow-
tie antenna by means of the particle swarm optimization. 
The optimized antenna exhibits favorable characteristics. 
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