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Abstract. The objective of this work is to investigate the 
impact of noise uncertainty on the performance of a wide-
band spectrum segmentation technique. We define metrics 
to quantify the degradation due to noise uncertainty and 
evaluate the performance using simulations. Our simula-
tion results show that the noise uncertainty has detrimental 
effects especially for low SNR users. 
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1. Introduction 
The typical operating environment of a cognitive ra-

dio (CR) will furnish heterogeneous networks with diverse 
characteristics. Network nodes will adapt to the operating 
environment by modifying transmission characteristics; 
therefore, parameters such as signal and interference levels, 
channel allocations and operating frequencies will be 
changing constantly. The requirement for detecting signals 
in such environments poses several challenges. Locating 
an unused spectrum within a large bandwidth will be time 
consuming without having prior knowledge about the op-
erating frequencies and bandwidths and setting a proper 
detection threshold level will become cumbersome.  

Increasing number of papers focus on addressing the 
challenges of wideband sensing. In [1], a dual-stage ap-
proach combines coarse and fine sensing schemes for more 
efficient wideband sensing. In [2], a bank of multiple nar-
rowband detectors is jointly optimized to improve oppor-
tunistic throughput capacity of cognitive radios. In [3]-[5], 
the wideband spectrum identification task is formulated as 
a spectral edge detection problem and the discontinuities in 
the power spectrum density are identified using wavelet 
[3], phase-field segmentation [4] and reversible jump 
Markov chain Monte Carlo (RJMCMC) [5] techniques. 

One of the important issues in spectrum sensing is the 
impact of uncertainty in noise power measurements. Chan-
nel noise cannot be measured perfectly due to measurement 
uncertainties. The uncertainties in the noise power knowl-
edge put fundamental limits on the detection performance. 
In [6], it is shown that the detection of spread spectrum 
signals by a wideband energy detector becomes more diffi-
cult as the SNR required for detection becomes a function 
of noise uncertainty only and is independent of the obser-
vation interval. This effect is called “SNR wall” in [7] and 
an extensive analysis of the impact of noise uncertainty is 
provided by considering general classes of signals and 
detection algorithms. The impact of noise uncertainty has 
also been verified experimentally using controlled experi-
ments in [8].  

Recently, noise uncertainty issues have been ad-
dressed within the scope of wideband sensing. In [9], 
spectrum sensing of several subbands when the back-
ground noise has an unknown variance is considered and 
an invariant generalized likelihood ratio detector is pro-
posed. In [10], maximum likelihood estimation of the noise 
and signal power levels from samples of a wideband signal 
comprising multiple multicarrier channels is considered 
and a recursive estimation method is proposed. As a rem-
edy to overcome noise uncertainty, the use of multiple 
antennas has been explored in [11] and [12]. 

The segmented periodogram approach proposed for 
wideband spectrum sensing developed in [5] requires noise 
power to be known exactly at the receiver. It is anticipated 
that the noise uncertainty will affect the performance of the 
segmentation technique and the objective of this study is to 
investigate its impact and to quantify the degradation using 
simulations.  

The presentation of the paper is as follows: In Section 
2, the segmented periodogram concept is presented. In 
Section 3 performance metrics introduced. Simulation set-
up and performance simulation results under noise uncer-
tainty are presented in Section 4. Finally, Section 5 con-
cludes the paper. 
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2. Segmented Periodogram 
The periodogram and its improvements are common 

tools for spectrum estimation mostly because computation-
ally efficient FFT algorithms can be used in the calcula-
tions. Even though the periodogram is an inconsistent 
estimate of the power spectrum, periodogram ordinates are 
a set of sufficient statistics for the corresponding spectral 
density function’s parameters [13]. Therefore a suitable 
smoothed version of the raw periodogram can produce 
good estimates of the power spectral density.  

There are several ways to improve the raw periodo-
gram estimate: averaging a number of different periodo-
grams (Bartlett procedure), applying a window to the esti-
mated sample correlation function before transforming 
(Blackman and Tukey) or combining windowing and aver-
aging (Welch periodogram). All of these improved 
methods reduce the variance of the estimated spectrum in 
exchange for increasing its bias. Alternatively, data 
samples weighted using a number of orthogonal window 
functions (tapers) can be averaged to reduce the variance of 
spectral estimates (multi-taper method-MTM). The MTM 
method provides a time-bandwidth parameter which is 
used to balance the variance and resolution. 

In the segmented periodogram approach [5], a multi-
ple change point analysis of the raw periodogram of the RF 
spectrum is developed, in which the spectra are separated 
into noise and signal segments by an unknown number of 
change-points, with each signal segment assumed to have 
been generated by a transmission. The number of users, 
their transmission frequencies and bandwidths are treated 
as random variables, and the posterior distributions of these 
parameters are obtained by updating prior distributions 
using the observed data. The marginal distributions of the 
parameters cannot be obtained analytically for this prob-
lem; therefore a numerical solution based on generating 
simulated samples from the posterior distributions of the 
parameters is utilized. These samples are then used to ob-
tain a smoothed power spectrum estimate from which the 
number of users, their spectral edges and received power 
levels can be obtained. As the smoothing is performed by 
averaging over random realizations of the underlying 
power spectrum inferred using the simulated samples, 
neither increasing the data length nor reducing the resolu-
tion is required.  

A piece-wise flat RF spectrum assumption can be 
justified based on the characteristics of practical radio 
communication signals. In such systems, the power spectra 
of transmitted signals are strictly shaped to fit into sharp 
transmission masks to avoid interference into the 
neighboring channels. The use of filters with sharp transi-
tion bands is also important for better utilization of the 
spectrum as this allows for stacking more channels into 
a given spectrum segment. From the radio spectrum moni-
toring and dynamic spectrum allocation perspective, the 
goal is to locate used/unused parts of the spectrum, rather 
than to extract the detailed spectral shape of the transmis-

sions. For these purposes, it is not unrealistic to assume 
that the observed wide band RF spectrum data can be mod-
eled as a piece-wise flat multiple change-point process. 
The piece-wise flat RF spectrum concept has also been 
utilized in [3], [4] in the context of wide-band spectrum 
sensing. 

2.1 Mathematical Model 

Assuming the noise samples at the receiver are inde-
pendent and Gaussian distributed, the periodogram ordi-
nates, excluding the DC component, will be independent 
and chi-square distributed with two degrees of freedom 

 2 2

2( )~ ( , ( ))Y k k    (1) 

where k is frequency bin number, σ2= σn
2N/2, σn

2 and N are 
the noise power and the DFT size, respectively. The non-
centrality parameter is given by the function λ(k) corre-
sponding to the received signal power for the kth bin in the 
absence of noise. The probability density function (pdf) of 
the χ2

2 distribution is given by 
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where I0(x) is the zero order modified Bessel function of 
the first kind. Note that the noncentrality parameter 
λ(k) = 0 for noise only bins, and λ(k) ≠ 0 for signal bins.  

We assume that the noncentrality function λ(.) is 
a step function and there are m change points at positions 
sj. The noncentrality function then forms a piecewise flat 
function for k = 1,…,N  
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where hj is the height of jth segment located between the 
sample points sj+1 and sj+1. Note that s0= 0 and sm+1= N by 
definition.  

Suppose there is a countable collection of candidate 
models Mm, m {0, 1, …, Mp}, where Mp is the 
maximum number of change points. Our assumption is that 
there are at most Mp/2 transmissions within the observed 
spectrum. Model Mm has a vector of unknown parameters 
θm which consists of s = [s1 s2 …sm] and h = [h0 h2 …hm], 
assumed to lie in Θm. The general parameter space Θ can 
be written as the union of each subspace 
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where each subspace Θm contains change locations and 
their heights for the model order m. Given a noisy power 
spectrum data Y(k), the objective is to estimate m and θm, 
i.e. the number of users, their spectral band edges and 
power levels. Fig. 1 shows a representation of a typical 
radio spectrum together with the parameters to be esti-
mated.  
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Fig. 1. A representation of a typical radio spectrum. 

A numerical solution to this parameter estimation 
problem is given in [5]. The approach presented in [5] is 
based on obtaining simulated samples from the posterior 
distribution of the model parameters using reversible jump 
Markov chain Monte Carlo (RJMCMC) technique [14]. 
These samples are then used to reconstruct the estimated 
posterior mean E{λ(k)|Y}by averaging m̂T  piece-wise flat 
functions, f , created using   m̂  for m̂  
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where mT ˆ  is the number of samples drawn from the poste-
rior and m̂  is called the marginal maximum a posteriori 
(MMAP) estimate of m given below 
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The details of the algorithm can be found in [5]. 

3. Performance Metrics 
Three sets of performance metrics are defined to as-

sess the performance degradation due to noise uncertainty. 
The first group of metrics is based on the mean squared 
distance between the actual and the estimated spectrum, 
which can be regarded as reconstruction error.  

Let λ denote the actual discrete power spectra and ̂  
be an estimate of λ obtained using the RJMCMC algorithm 
explained in Section 2. The total mean squared error of the 
reconstruction is calculated as 
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where k is the frequency bin index and N-1 is the total 
number of periodogram bins excluding DC component. 

In order to distinguish between errors in noise and 
signal bins, partial mean squared errors can be defined for 
noise and signal segments only 
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where ψ and ν are the sets of periodogram bins containing 
signal and noise components, and Nsignal and Nnoise are the 
numbers of signal and noise only bins, respectively. 
MSEsignal and MSEnoise measure the reconstruction errors in 
signal and noise bins, and MSE is the total reconstruction 
error. Note that   MSE ≠ MSEsignal + MSEnoise. 

The second set of metrics is defined based on the 
numbers of erroneous detection decisions, namely missed 
detections and false alarms. These metrics measure the 
effect of noise uncertainty on the detection performance 
when a segmented periodogram is employed in sensing. 
A missed detection error occurs when a signal bin is 
declared to be a noise bin whereas a false alarm occurs 
when a noise bin is declared as a signal bin. The ratios of 
missed detection, false alarm and total error rate are 
defined by 
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where Nmiss, Nfalse and Nerror are the total numbers of missed 
detections, false alarms and total errors, respectively. Note 
that the number of total detection errors Nerror is the sum of 
false alarms and missed detections. 

The last metric proposed to evaluate the performance 
is the model order estimation error, which is defined as 

 ˆ
eM m m    (13) 

where m and m̂  are the actual and estimated numbers of 
spectral edges. Note that the number of spectral edges 
determines the number of segments and therefore relates to 
the number of active users within the observation band-
width.  

4. Performance Evaluation 
The performance evaluation of the segmentation algo-

rithm under noise uncertainty is accomplished using ran-
domly generated periodograms. Each randomly generated  
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periodogram has 1024 bins and contains a number of active 
users with varying bandwidths, carrier frequencies and 
power levels. In all performance evaluation simulations in 
this paper, the number of users and the bandwidth of each 
user are drawn from the discrete uniform distributions 
U{1, … ,10} and Wi~ U{30,…,60}, respectively and the 
users are placed at randomly selected locations. 

In the simulations, the proposed metrics are calculated 
for a given user SNR, which is defined as 
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where λ is the received power of the user and σ2 is the 
variance of both real and imaginary components of the 
noise. 

Monte Carlo simulations are used for performance 
evaluations. In each simulation, the RJMCMC algorithm is 
run on a randomly generated periodogram. The RJMCMC 
algorithm is initialized with the following priors: Gamma 
distribution h ~ Γ(α,β) with α = 1 and β = 0.02 is used for 
segment heights. The number of change points is drawn 
from Poisson distribution m ~ Pois(Λ) with Λ = 1 and 
a maximum support restriction of 40. For the change point 
locations even-numbered order statistics is employed [14].  

The RJMCMC algorithm simulates 10000 samples 
and the MMAP model order is estimated from 7000 sam-
ples after 3000 burn-in samples. The simulated samples 
that are from the MMAP model order are then used to 
reconstruct a segmented periodogram by calculating the 
posterior expectations as explained in Section 2. The errors 
are calculated for 1000 random periodograms and averaged 
over the simulations for each user SNR of 2 to 20 dB at 
1 dB intervals. In the evaluation of noise power uncer-
tainty, mismatch values of -3 to +3 dB at 0.5 dB intervals 
are added to the actual noise power. The RJMCMC algo-
rithm is initiated with the assumed noise power as the 
actual noise power is not available. 

4.1 Reconstruction Performance  

The average mean squared reconstruction error versus 
user SNR is plotted in Fig. 2 (solid), showing that recon-
struction error decreases as the user SNR increases. This is 
because the segmentation algorithm is able to estimate 
spectral heights more accurately as high-SNR users create 
spectral edges that are easier to locate. 

Fig. 2 also shows the performance under uncertainty 
(dashed). The reconstruction error is higher when there is 
uncertainty in noise power. Note that the impact of noise 
uncertainty is more significant when the user SNRs are 
lower. At high SNRs, reconstruction performance degra-
dation due to noise uncertainty is negligible. 

The mean squared reconstruction error versus noise 
power uncertainty is shown in Fig. 3 (solid). As seen from 
Fig. 3, the reconstruction error is minimum when noise 

uncertainty is zero and the performance degrades as the 
amount of uncertainty increases for both over and underes-
timation cases. Note that the performance degradation due 
to overestimation is more significant than that for underes-
timation. 
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Fig. 2. MSE versus user SNR. 
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Fig. 3. MSE versus noise power uncertainty.  

Also plotted in Fig. 3 are reconstruction error curves 
for signal and noise bins separately. It is observed from 
these curves that overestimation of the noise power results 
in improved noise level estimates; however the perform-
ance degradation due to signal level estimates dominates 
the total error producing a net performance loss. This is 
because signal levels are higher than the noise levels for 
the tested user SNRs and therefore contribute more to the 
error sum. Note that the errors in the signal level estimates 
are negligible when the noise power is underestimated. 

4.2 Detection Performance 

The number of missed detections and false alarms 
were calculated for randomly generated periodograms by 
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comparing the value of each segmented periodogram bin to 
a threshold value, which was set to be the noise floor of 
2σ2. The total detection error rate averaged over 1000 
simulations for each user SNR of 2 to 20 dB at 1 dB inter-
vals are plotted in Fig. 4 (solid). 

Also shown in Fig. 4 are the detection errors under 
noise uncertainty (dashed curves). As seen from this figure, 
there is about 10% loss in total detection rate between 
uncertain and perfect noise power cases in lower user 
SNRs. As the user SNR increases, the performance loss 
due to noise power uncertainty becomes negligible.  

Fig. 5 shows the missed detections and false alarms 
versus noise power uncertainty. This figure shows that 
overestimating the noise power has a negligible effect on 
the false alarm rate; however the missed detection rate 
deteriorates significantly as the amount of overestimation 
increases. Underestimating the noise power mostly affects 
the false alarm rate. Even though the increase in false 
alarm rate is less than 5% for underestimation levels of less 
than 2 dB, the performance deteriorates significantly when 
the underestimation amount exceeds 2 dB. 
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Fig. 4. Missed detection and false alarm ratios versus SNR.  
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Fig. 5. Missed detection and false alarm ratios versus noise 

power uncertainty. 

4.3 Model Order Estimation Errors 

The cumulative mass functions of the model estima-
tion errors are shown in Fig. 6. As seen from this figure, 
underestimating the noise power results in overestimation 
of the number of users (false users are detected). If the 
noise power is overestimated then the number of users is 
underestimated (missed users). 

Model order estimation errors at various noise uncer-
tainty levels are shown in Fig. 7 as a function of the user 
SNR. As seen from the figure, model order estimation error 
decreases as the SNR increases, even for higher noise un-
certainty values. 

 
Fig. 6. Cumulative mass function of the model order 

estimation error. 
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Fig. 7. Model order estimation error versus SNR. 

5. Conclusions 
In this work, the impact of the noise uncertainty on 

the detection and reconstruction performance of the seg-
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mented periodogram technique is investigated. Simulation 
results show that noise power uncertainty degrades both 
detection and reconstruction performances.  

The impact of noise uncertainty is more detrimental 
for low SNR users. However, detection degradation 
performance in low SNRs is negligible when the noise 
uncertainty is low. 

The over and underestimation of the noise power 
affects the estimation accuracy in signal and noise seg-
ments, respectively. Similarly, noise power overestimation 
results in increased missed users whereas noise power 
underestimation generates false users. 

In order to alleviate noise power uncertainty issues 
noise power can be treated as a nuisance parameter and 
estimated together with the rest of the parameters in the 
RJMCMC algorithm. This will be addressed in future 
work. 
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