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Abstract. This work proposes a distributed algorithm for
energy optimal routing in a wireless sensor network. The
routing problem is described as a mathematical problem by
the minimum-cost multi-commodity network flow problem.
Due to the separability of the problem, we use the duality
theorem to derive the distributed algorithm. The algorithm
computes the energy optimal routing in the network without
any central node or knowledge of the whole network struc-
ture. Each node only needs to know the flow which is sup-
posed to send or receive and the costs and capacities of the
neighboring links. An evaluation of the presented algorithm
on benchmarks for the energy optimal data flow routing in
sensor networks with up to 100 nodes is presented.
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1. Introduction

1.1 Motivation
Our work is focused on a distributed algorithm for data

flow routing through a multi-hop network. An example of
the target application is a network periodically sensing some
consumption variables (like gas consumption, water con-
sumption, etc.) in large objects. Each sensing device pro-
duces a data flow of a particular volume, which is supposed
to be routed through the network. The objective is to opti-
mize the energy consumption for the data transfer (minimal
possible energy consumption), while constrained by com-
munication capacities for each communication link in the
network (maximum data volume which can be transferred
trough the link per a time unit).

There are many communication protocols designed for
data routing in wireless sensor networks. However, to
achieve energy optimal routing which complies with the
communication capacities, the systems needs a central com-

putational point with the knowledge of the actual network
structure and parameters (e.g. [1], [2]). The existence
of such a computational point decreases the robustness of
the system against network damage and network parame-
ters changes (e.g. link capacities, energy consumption, etc.)
caused by interference or other external events. Furthermore,
routing of such information (the actual network structure and
parameters) has to be solved in the case of the centralized al-
gorithm.

In this paper, we propose a distributed algorithm, which
computes the energy optimal routing without the need of any
central computational or data point. The algorithm supposes
that each node knows only the capacity and the cost (energy
consumption per sent data unit) of the communication links
of the node (incoming, outgoing links) and the data which it
is supposed to send and receive. The main purpose of this
paper is to present the principle of new distributed routing
algorithms rather than to present an application ready algo-
rithm. We believe that the presented approach can lead to
new efficient and highly adaptive routing algorithms for sen-
sor networks.

1.2 Problem Formalization
The network topology is represented by an oriented

graph where the nodes represent the devices and the ori-
ented links represent the communication links between the
devices. The communication capacity and the cost (i.e. en-
ergy consumption) are associated with the links of the graph.
In the paper we assume a TDMA (Time Division Multi-
ple Access) like protocol (e.g. GTS allocation in IEEE
802.15.4) which assigns the communication capacities and
ensures collision-free communication.

The communication in the network is described by
communication demands. Each communication demand is
given by source nodes, sink nodes and data volume to be
transferred. Therefore data transfer from several source
nodes to one sink node can be described as one communi-
cation demand (multi-source). In a similar way, the model
allows to describe a problem with several sink nodes (multi-
sink). We formalize the problem as a minimum-cost multi-
commodity network flow problem, where each commodity
represents one communication demand in the network.
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1.3 Related Work
Traditionally, the routing problems for data networks

have often been formulated as linear or convex multi-
commodity network flow routing problems e.g. [3], [4],
[5] for which many efficient solution methods exist [6], [7],
[8], [9]. One of the advantages of this method is that sev-
eral objective functions and constraints can be put together
(e.g. different types of capacity and energy consumption
constraints, Real-time constraints, etc.). Using the same un-
derlying model, we can easily combine the solution of dif-
ferent works focused on partial problems.

There are several works, which focus on the decompo-
sition of network problems described by convex optimiza-
tion problem. A systematic presentation of the decomposi-
tion techniques for network utility maximization (NUM) is
presented in [10], [11], [12]. The authors present several
mathematical approaches to structural decomposition of the
NUM problems and classify them. In [13], [14], [15] the
authors use dual decomposition to decompose cross-layer
optimization problems into optimization of separated layers.
The presented approaches lead to structural decomposition
(e.g. to routing layer, capacity layer...) which is not suitable
for derivation of the in-network distributed algorithm.

The decomposition of an optimal routing problem is
presented e.g. in [16], [17], where the authors have focused
on the node-path formulation of the routing problem and use
the dual decomposition to find the distributed algorithm. The
presented algorithms can be described as a negotiation be-
tween the source node and the path load. For each iteration
of the algorithm the evaluation over the entire path has to
be computed. This approach is suitable for problems with
a small number of communication paths. However, in sensor
networks like routing problems, where many possible com-
munication paths exist, we have to find a different way to
distribute the routing algorithm. Moreover, these algorithms
are limited to a strictly convex objective function and fail in
a case of linear objective functions.

1.4 Contribution and Outline
The main contributions of this paper are:

1. Introduction of a new distributed algorithm based on
a dual decomposition of the node-link formulation of
the routing problem. (The existing approaches use the
node-path problem formulation, which leads to differ-
ent algorithms.)

2. Introduction of a new approach to distribute a linear
optimization problem by dual decomposition using the
proximal-point method. (The other works using the
dual decomposition of the routing problems are lim-
ited to strictly convex objective functions and fail for
the linear functions.)

3. Evaluation of the presented algorithm on benchmarks
for the energy optimal routing.

The paper is organized as follows: Section 2 describes the
network structure, the multi-commodity network flow model
for the data flow routing and the formulation of the objective
function in terms of energy consumption (similar to [2]). In
Section 3, which is the main part of our work, the distributed
algorithm and its derivation for the energy optimal data flow
routing is presented. In Section 4 the algorithm is extended
into a form more suitable for node capacity constraints. An
example with 100 nodes and the computational complexity
experiments of the algorithm are given in Section 5. Section
6 concludes the paper and mentions the future work.

2. Multi-Commodity Model
In this section, we briefly summarize the basic ter-

minology and specify the multi-commodity network flow
model used in this paper.

2.1 Network Structure
The network is represented by an oriented graph, where

for each device able to send or receive data, a node of the
graph exists. The nodes are labeled as n = 1, . . . ,N. Di-
rected communication links are represented as ordered pairs
(n1,n2) of distinct nodes. The presence of a link (n1,n2)
means that the communication, from node n1 to node n2, is
possible. The links are labeled as l = 1, . . . ,L. We define the
set of the links l leaving the node n as O(n) and the set of
the links l incoming to node n as I (n). Each link is only in
one set O(n1) of some node n1 and only in one set I (n2) of
some other node n2. The network structure can be described
with an incidence matrix A in the node-link form.

An,l =

 1, l ∈I (n) (link l enters node n)
−1, l ∈ O(n) (link l leaves node n)

0, otherwise
(1)

(1)

(2) (3)

(4)10

4

1

4 1(1)

(3)

(2)

(4)
(5)

Fig. 1. Graph of the basic network.

Example: An example of a simple graph with 4 nodes and
5 links is shown in Fig. 1. The numbers in parentheses
stand for the node and link indexes. The values asso-
ciated to the links stand for the communication costs.
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The incidence matrix A for this graph is:

A =


−1 −1 0 0 0

1 0 −1 −1 0
0 0 1 0 −1
0 1 0 1 1



2.2 Multi-Commodity Network Flow
We have used a multi-commodity network flow model,

which is widely used in the literature of network flow rout-
ing and optimization [3], [6], [1]. In the multi-commodity
network flow model, each node can send a different volume
of data to any node. Each requested data transfer through the
network is called the communication demand m and the set
of all communication demands is labeled as M . From the
nature of the multi-commodity flow model, the data flow of
each communication demand can be fragmented into more
paths across the network. The model assumes that the flow
is lossless and that it satisfies the flow conservation law at
each node (for the given commodity, the sum of flow incom-
ing to the node is equal to the sum of flow leaving the node).

The communication demand can be seen as a flow of
a given commodity coming into the network in some nodes
and leaving the network in other nodes. Each demand can
come into the network in more than one node and leave the
network in more nodes too (multi-source, multi-sink). Let
us denote the flow volume of demand m coming into the net-
work in node n as s(m)

in,n ≥ 0 and similarly the flow leaving

the network in node n as s(m)
out,n ≥ 0. We define the vectors

of the flow of demand m leaving the network as ~s(m)
out ∈ RN

and the flow incoming into the network ~s(m)
in ∈ RN over all

nodes. The flow coming into the network has to be equal to
the flow leaving the network for all communication demands
( i.e. ∑

N
n=1 s(m)

in,n = ∑
N
n=1 s(m)

out,n ∀m ∈M ).

Let x(m)
l ≥ 0 be the flow of demand m routed through

the link l. We call ~x(m) ∈ RL the flow vector for demand
m, which describes the flow of the demand in all links over
the network. The flow vector and the leaving/incoming flow
have to satisfy the flow conservation law for each communi-
cation demand:

A~x(m) =~s(m)
out −~s

(m)
in ∀m ∈M . (2)

Finally, we focus on the communication capacity con-
straints. The vector of the total volume of the flow in
the links over all communication demands is equal to
∑m∈M ~x(m). There could be many different capacity con-
straints in the network (e.g. link capacity, node capacity,
etc.). We use the link capacities in this work, which can be
written as:

∑
m∈M

~x(m) ≤~µ (3)

where ~µ ∈ RL ≥~0 is a vector of the link capacities for all
links in the network.

In summary, our network flow model imposes the fol-
lowing group of constraints on the network flow variables
~x(m):

A~x(m) = ~s(m)
out −~s

(m)
in ∀m ∈ M ,

∑
m∈M

~x(m) ≤ ~µ,

~x(m) ≥ ~0 ∀m ∈ M ,

~s(m)
in ≥ ~0 ∀m ∈ M ,

~s(m)
out ≥ ~0 ∀m ∈ M ,
~µ ≥ ~0.

(4)

This model describes the average behavior of the data trans-
mission (i.e., the flow is expressed in terms of the volume of
the data transmitted per a unit of time) and ignores packet-
level details of transmission protocols. The link layer com-
munication protocol (e.g. TDMA) should set the bandwidths
for each demand according to the flow vectors~x(m). The link
capacity should be defined appropriately, taking into account
packet loss and retransmission, so that the flow conservation
law holds with sufficient probability.

Example (continued): Let all the link capacities in our ex-
ample be equal to 1. Then ~µ = (1,1,1,1,1)T .

Let there be two communication demands, both with
the flow volume equal to 1. The first is routed from
node 1 to node 4 and the second from node 2 to node 4.
Therefore, we have:
~s(1)in = (1,0,0,0)T ,
~s(2)in = (0,1,0,0)T ,
~s(1)out =~s(2)out = (0,0,0,1)T .

2.3 Routing Optimization
All routings that satisfy the system of inequalities (4)

are feasible solutions of the routing problem. However, the
best solution in terms of the cost, needs to be found. The
objective function for the optimization of the energy con-
sumption is:

ftotal cost =~cT
∑

m∈M
~x(m) (5)

Where vector ~c is the vector of the communication cost per
data unit for all links in the network. The task of the total
energy minimization is to minimize the function ftotal cost by
setting the optimal flow vector ~x, subject to the system of
inequalities (4).

Example (continued): Let the communication cost in our
example be the same as in Fig. 1 (the numbers associ-
ated to the links), so~c = (4,10,1,4,1).

One of the optimal solutions for this example is:
~x(1) = (1,0,0,1,0)T ,~x(2) = (0,0,1,0,1)T ,
which means that the first flow is routed through the
nodes (1 → 2 → 4) and the second flow is routed
through the nodes (2→ 3→ 4). The total flow is the
sum of the routings over all demands ∑m∈M ~x(m) =
(1,0,1,1,1)T and the communication cost is equal
to 10. This energy optimal routing is shown in Fig. 2.
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(1)

(2) (3)

(4)No flow

Flow 1
Flow 1

Flow 2

Flow 2

Fig. 2. An example of optimal data flow routing with capacity
constraints.

3. Problem Decomposition
To decompose the routing algorithm into the network,

we use a gradient optimization method to solve its dual prob-
lem. However, the linearity of the routing problem defined in
Sec. 2.2 would cause oscillations in the algorithm and pre-
vents us finding the optimal solution. We use the proximal-
point method (for details see [6]) to modify the problem into
a strictly convex form, which allows the usage of the gradient
method. In the following text we derive the dual formulation
of the routing problem and present the gradient algorithm to
find the optimal solution.

3.1 Proximal-Point Method
The proximal-point method is an iterative method de-

scribed as:

~xk+1 = argmin
~x∈S

(
f (~x)+ ε

(
~x−~xk

)T (
~x−~xk

))
(6)

where S is a convex set, f (~x) is a convex function and the
ε > 0 is a constant. Please note, that each solution xk of the
iteration (6) is a feasible solution and that for each k ∈N
holds f (~xk) ≥ f (~xk+1). If k→ ∞ then min~x∈S( f (~x)+ ε(~x−
~xk)

T (~x−~xk))→ min~x∈S f (~x). The iteration (6) is called the
outer iteration or the proximal-point iteration in this paper.

By applying (6) to the energy optimal routing problem
and substituting~xk by~y, we can write the system of inequal-
ities for one proximal-point iteration in the form:

min
x

∑
m∈M

(
~cT~x(m)+ ε(~x(m)−~y(m))T (~x(m)−~y(m))

)
subject to:

(7)

A~x(m) = ~s(m)
out −~s

(m)
in ∀m ∈ M ,

∑
m∈M

~x(m) ≤ ~µ,

~x(m) ≥ ~0 ∀m ∈ M ,

~s(m)
in ≥ ~0 ∀m ∈ M ,

~s(m)
out ≥ ~0 ∀m ∈ M ,
~µ ≥ ~0

where ~y is the proximal-point variable with a fixed value
from the proximal-point iteration.

3.2 Dual Problem
Please note that according to Slater’s conditions (see

e.g. [8]), strong duality holds for the problem (7) (i.e. the
optimal values of the dual and the primal problem are equal).

The Lagrangian function of the system of inequalities
(7) is:

L(~x(m),~y(m),~λ ,~θ (m)) =

= ∑
m∈M

(
~cT~x(m)+ ε(~x(m)−~y(m))T (~x(m)−~y(m))

)
+ ∑

m∈M
~θ (m)T

(A~x(m)−~s(m)
out +~s(m)

in )

+~λ T ( ∑
m∈M

~x(m)−~µ)

(8)

where~x(m) ≥~0 is called the primal variable,~λ ≥~0 and ~θ (m)

are called the dual variables and~y(m) ≥~0.

The dual function W is:

W (~y(m),~λ ,~θ (m)) = min
~x(m)≥~0

L(~x(m),~y(m),~λ ,~θ (m)). (9)

Differentiation of the Lagrangian function (8) gives:

∂L
∂~x(m)

=~c+~λ +AT~θ (m)+2ε~x(m)−2ε~y(m) (10)

and the minimizer~x(m)
min of the dual function (9):

~x(m)
min =

[
~y(m)− 1

2ε
(~c+~λ +AT~θ (m))

]+ (11)

where [..]+ denotes a positive or zero value in each compo-
nent [..]+ = max(~0, ..). By substituting ~x(m) in (8) by ~x(m)

min

from (11) we get the dual function W (~y(m),~λ ,~θ (m)) (9).

Then the dual problem of (7) is:

max
~θ (m),~λ≥0

W (~y(m),~λ ,~θ (m)) (12)

and its gradient:

∂W

∂~λ
= ∑

m∈M
~x(m)

min−~µ, (13)

∂W

∂~θ (m)
= a~x(m)

min−~s
(m)
out +~s(m)

in . (14)

3.3 Dual Gradient Algorithm
To solve the routing problem, we put together the

proximal-point method (6) and the dual problem (12). The
created algorithm consists of two nested iterations. The in-
ternal iteration is the gradient iteration which solves the dual
problem (12). The outer iteration is the proximal-point itera-
tion corresponding to Equation (6). The algorithm structure
is presented in Fig. 3.
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Inicialization

Primal variables
Eq: (15)

Dual variables
Eq: (16,17) r = r + 1

k = k + 1
Gradient 
iteration

Proximal-
-point

iteration

END

terminate

terminate

repeat

repeat

New parametrs
Eq: (18)

Fig. 3. Iteration algorithm.

1. Initialize the dual and the proximal-point variables:

r := 1, k := 1, ~θ (m) := ~θ
(m)
start ,

~λ :=~λstart , ~y(m) :=~y(m)
start .

2. Evaluate the primal variables~x(m)
min:

~x(m)
min :=

[
~y(m)− 1

2ε

(
~c+~λ +AT~θ (m)

) ]+
. (15)

3. Modify the dual variables according to the gradient of the dual
function (13)

~λ :=
[
~λ +α

(
∑

m∈M
~x(m)

min−~µ
)]+

, (16)

~θ (m) := ~θ (m)+α
(
a~x(m)

min−~s
(m)
out +~s(m)

in
)
. (17)

4. r := r+1; Go to step 2 and start a new cycle of the gradient itera-
tion.
Repeat R(k)-times.

5. Start new cycle of the proximal-point iteration:

• Set the iteration and the proximal-point variables:

r := 1, k := k+1,

~y(m) :=~x(m)
min. (18)

• Go to step 2.
Repeat the proximal-point iteration K-times.

6. Read the result routing: ~x(m) =~x(m)
min .

Tab. 1. Dual Gradient Algorithm.

The termination of the iterations could be done through
sophisticated methods based on the progress of the dual vari-
ables in combination with the global communication. How-
ever, for the verification of the concept of this algorithm it
is more practical to use a constant number of proximal-point
iterations based on a heuristic experiences. To the same way
we set the number of the gradient iterations to decrease pro-
portioning to the index of the proximal-point iterations.

We denote a counter of the gradient iteration as r and
a counter of the proximal-point iteration as k. The constants
R(k) and K denote the numbers of cycles of the correspond-
ing iterations. The constant α > 0 is the step size of the

gradient algorithm. The dual gradient algorithm is presented
in Tab. 1.

In the first step of the dual gradient algorithm in Tab. 1,
the variables are set to arbitrary initial values. The closer the
values are to the final solution, the faster the convergence
of the algorithm becomes. This property can be used in the
case of minor changes of the network structure during its
operation or in case of a pre-computed routing e.g. based on
Dijkstra’s algorithm. However, we will not investigate this
problem further in this paper. During the experiments in this
paper we initialize the variables to zero.

3.4 Distributed Algorithm
The presented distributed algorithm is running on each

node in the network. The algorithm is synchronized by the
communication between the nodes. The structure of the
computation of the distributed algorithm is the same as the
structure of the Dual Gradient Algorithm in Fig. 3, only the
communication is added.

We use x(m)
min,i, y(m)

i , λi, ci etc. to denote the i-th compo-
nent of the corresponding vector.

Due to the structure of matrix A (see Sec. 2.1) we
rewrite the expression (15) in order to compute the flow of
the communication demand m in the link l as:

x(m)
min,l =

[
y(m)

l − 1
2ε

(
cl +λl +θ

(m)
l+ −θ

(m)
l−
) ]+

(19)

where the expression l− denotes index of the start node of
the link l and l+ denotes index of the end node of the link l,
i.e. l ∈ O(l−) and l ∈I (l+).

Similarly we can rewrite the expressions (16, 17):

λl =
[
λl +α

(
∑

m∈M
x(m)

min,l−µl
)]+

, (20)

θ
(m)
n = θ

(m)
n (21)

+ α
(

∑
i∈I (n)

x(m)
min,i− ∑

i∈O(n)
x(m)

min,i− s(m)
out,n + s(m)

in,n

)
.

Each node n is responsible for computation of the flow vol-
ume of the links starting in the node n and for the corre-
sponding dual variables. Therefore, node n computes x(m)

min,l

for all l ∈ O(n) and all m ∈M , λl for all l ∈ O(n) and θ
(m)
n

for all m ∈M .

In (19), node n computes x(m)
min,l for all links leaving

node n. It is a function of the local variables y, λ , θ and
the variables θ of the neighbor nodes. Similarly, the compu-
tation of λl and θ

(m)
n in (20), (21) is a function of the local

variables and the variables of the neighbor nodes that are
within a one hop communication distance.

The algorithm for node n is presented in Tab. 2. In
step 1, the algorithm initializes the variables. Similarly as in
Tab. 1, the closer the values are to the optimal solution the
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less cycles of the iterations are needed. In steps 2 and 3, the
node communicates the values of the proximal-point vari-
ables and the dual variables. In step 4, the node computes
x(m)

min,l for the links leaving the node. In step 5, the node com-

putes x(m)
min,l for the links entering the node from its neighbors.

In step 6, the node modifies the dual variables. Steps 7 and
8 start the new iteration cycles of the algorithm.

1. Initialize the variables:

y(m)
l := y(m)

start,l ∀m ∈M ∀l ∈ O(n),

θ
(m)
n := θ

(m)
start,n ∀m ∈M ,

λl := λstart,l ∀l ∈ O(n).

2. Send/receive the proximal-point variables to/from the neighbors.

Send: y(m)
l ∀m ∈M ,∀l ∈ O(n),

Receive: y(m)
l ∀m ∈M ,∀l ∈I (n).

3. Send/receive the dual variables to/from the neighbors.

Send: λl ∀l ∈ O(n),
θ
(m)
n ∀m ∈M ,

Receive: λl ∀l ∈I (n),
θ
(m)
l− ∀m ∈M ,∀l ∈I (n).

4. Evaluate the primal variables x(m)
min,l for ∀l ∈ O(n) and ∀m ∈M :

x(m)
min,l :=

[
y(m)

l − 1
2ε

(
cl +λl +θ

(m)
l+ −θ

(m)
n
) ]+

.

5. Evaluate the neighbors primal variables x(m)
min,l for ∀l ∈ I (n) and

∀m ∈M :

x(m)
min,l :=

[
y(m)

l − 1
2ε

(
cl +λl +θ

(m)
n −θ

(m)
l−
) ]+

.

6. Modify the dual variables.

λl :=
[
λl +α

(
∑

m∈M
x(m)

min,l −µl
)]+

∀l ∈ O(n),

θ
(m)
n := θ

(m)
n +

α
(

∑
i∈I (n)

x(m)
min,i− ∑

i∈O(n)
x(m)

min,i− s(m)
out,n + s(m)

in,n
)

∀m ∈M .

7. Go to step 3 and start a new cycle of the gradient iteration.
Repeat R(k)-times.

8. Start new cycle of the proximal-point iteration:

• Preserve the dual variables θ
(m)
n and λl for ∀l ∈ O(n) and

∀m ∈M and set the proximal-point variables:

y(m)
l := x(m)

min,l ∀l ∈ O(n),∀m ∈M .

• Go to step 2.
Repeat the proximal-point iteration K-times.

9. Each node n knows the routing of the outgoing flow.
x(m)

l = x(m)
min,l for ∀l ∈ O(n) and ∀m ∈M .

Tab. 2. Distributed Routing Algorithm executed in node n.

4. Node Communication Capacities
In some applications, especially in wireless networks,

the node communication capacity (maximum data volume
which can be transmitted by a node per a time unit) is more

appropriate than the link communication capacity, used in
this paper. The link communication capacity has been used
during the algorithm derivation because of the more trans-
parent presentation and because of the more general behav-
ior of the algorithm (e.g. in case of the GTS slots alloca-
tion in IEEE 802.15.4 where each link has its capacity as-
signed). The node capacity can be easily transformed to the
link capacity by the graph transformation where each node
is replaced by two nodes connected by a link with the given
capacity. However, in this section we present a direct trans-
formation of the equations of the presented algorithm to im-
plement the node capacities more efficiently.

To describe the node capacity constraints, we define the
new matrix D as:

Dn,l =

{
1, l ∈ O(n) (link l leaves node n),
0, otherwise. (22)

A new form of the communication capacity constraints of
Equation (3) is:

∑
m∈M

D~x(m) ≤~µ (23)

where ~µ ∈ RN is a vector of the node capacities for all the
nodes in the network.

These changes are directly projected into the equations
(4), (7), (8), (10) and (13). The changes in the dual gradient
algorithm in Tab. 1 are in (15) and (16). The new form of
(15) is:

~x(m)
min :=

[
~y(m)− 1

2ε

(
~c+DT~λ +AT~θ (m)

) ]+
(24)

and the new form of the (16) is:

~λ :=
[
~λ +α

(
∑

m∈M
D~x(m)

min−~µ
)]+

. (25)

Similarly, the changes of the distributed routing algo-
rithm executed in node n in Tab. 2 are the following:

In step 4:

x(m)
min,l :=

[
y(m)

l − 1
2ε

(
cl +λn +θ

(m)
l+ −θ

(m)
n
) ]+

, (26)

in step 5:

x(m)
min,l :=

[
y(m)

l − 1
2ε

(
cl +λl− +θ

(m)
n −θ

(m)
l−
) ]+

, (27)

in step 6:

λn :=
[
λn +α

(
∑

l∈O(n)
∑

m∈M
x(m)

min,l−µn
)]+

. (28)

While applying these changes, the algorithm uses one
variable λn for each node instead of one variable λl for each
link. Using a similar transformation of the equations, the
algorithm can be updated to implement many different com-
munication constraints (e.g. both oriented link capacities,
node incoming and transmitting capacities...) and their com-
binations. Please note that when considering the link ca-
pacity constraints the matrix D is an identity matrix of size
[L×L].
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5. Experiments
To demonstrate the behavior and the correctness of the

distributed routing algorithm, we have performed experi-
ments in Matlab. We have focused on a data collection prob-
lem, where several nodes are supposed to send data flow to
the given sink nodes (i.e. multi-commodity multi-source,
mono sink problem).

The random networks for the experiments have been
constructed as follows: We consider a square field of size
[size × size], where the size is changing during the experi-
ments. The field is divided into sub-squares of size [1 × 1].
One node is randomly placed into each sub-square and the
communication distance is set to 2 (i.e. node A can com-
municate with node B, if and only if their Euclidean dis-
tance is less than 2). Each node, which is not on the border
of the network field, has at least three communication links
to its neighbors. Please notice, that our network is close to
the “unit-disk network” [18]. The communication costs per
transmitted data flow unit have been set as the power of the
distance between the nodes.
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Fig. 4. Data flow routing.
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Fig. 5. Lagrangian progress.

5.1 Algorithm Presentation
To present the resulting optimal data flow routing in the

network and the progress of the Lagrangian function during
the computation, we have performed an experiment based on
the network described above. The field size has been set to
10 (i.e. there are 100 nodes in the network). There are two
communication demands in the network, each of them with
a different sink node. Each node has a 60 % probability that
it will send data of the first communication demand of vol-
ume 1 to the first sink node and a 40 % probability that it
will send data of the second communication demand of vol-
ume 1 to the second sink node (i.e. the data flow coming
into the network in node n of the demand 1 is s(1)in,n ∈ {0,1}
and the data flow of the demand 2 is s(2)in,n ∈ {0,1}). The

link capacities have been set to µl =
1
2 maxm∈M ∑

N
n=1 s(m)

in,n.
The constants of the algorithm have been set as: α = 0.05,
ε = 0.2. The initial values y(m)

start,l , θ
(m)
start,n, λstart,l have been

set to 0.

The optimal data flow routing is shown in Fig. 4, where
the first communication demand is in black and the second
communication demand in gray. The progress of the La-
grangian function (8) is presented in Fig. 5. The Lagrangian
function is in black and its final value in gray. (The final
value was computed separately by a centralized algorithm
for evaluation purposes only.) The nesting of the gradient it-
eration and the proximal-point iteration can be seen in Fig. 5.
The internal iteration (i.e. the gradient iteration) maximize
the Lagrangian function using the dual variables θ

(m)
n and

λl with constant variable y(m)
l . The outer iteration (i.e. the

proximal-point iteration) minimize the Lagrangian function
using the variable y(m)

l .

5.2 Number of Iterations
To demonstrate the statistical behavior of the algo-

rithm, we have performed several tests in networks of dif-
ferent size. We have set the field size gradually from 3 to
10 (i.e. from 9 to 100 nodes), the number of communi-
cation demands have been set to 10 (multi-source, mono-
sink) with random sinks. Each node has a 50 % prob-
ability to send the data flow for each communication de-
mand with volume 1. The link capacities have been set to
µl =

1
2 maxm∈M ∑

N
n=1 s(m)

in,n. The constants of the algorithm

have been set as: α = 0.1, ε = 0.6. The initial values y(m)
start,l ,

θ
(m)
start,n, λstart,l have been set to 0. The computation has been

repeated, on random networks, 100 times for each field size.
The numbers of the iterations R(k) and K have been set to
sufficiently large values in order to ensure that each gradient
iteration achieves an optimal solution for the given proximal-
point variables and that the final solution is the energy op-
timal routing. The results have been evaluated as a maxi-
mum, average and minimum number of iterations needed to
achieve a 0.01 % deviation of the Lagrangian function from
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the optimal value. (the optimal value was computed sep-
arately by a centralized algorithm for evaluation purposes
only).

In Fig. 6, the number of needed proximal-point itera-
tions, in dependence on the number of nodes in the network,
is presented.

In Fig. 7, the number of needed repetitions of the gra-
dient algorithm in the first cycle of the proximal-point itera-
tion, in dependence on the number of nodes in the network,
is presented.

In Fig. 8, the number of needed repetitions of the gra-
dient algorithm, in dependence on the index of the proximal-
point method for field size 10, is presented. The number of
the needed gradient iterations decreases rapidly during the
computation. Only the first 35 proximal-point iterations are
presented, because the next values are equal to 1.

5.3 Robustness
The presented approach requires that the gradient iter-

ation ends with an optimal solution for a given proximal-
point variables. Due to the distribution of the algorithm, the
termination of the gradient iteration is problematic and in
this paper we use heuristic constants for the number of rep-
etitions. Being aware of the problems with the algorithm
termination we have performed several simulations to eval-
uate the robustness of the approach. We have focused on
the case when the gradient iterations do not reach the op-
timal solution for the given proximal-point variables in the
given number of iterations. To ensure this behavior, we have
set the number of repetitions of the gradient iterations to 50
(R(k) = 50 ∀0 < k < K). An example of progress of the
Lagrangian function for the first 12 proximal-point iterations
(i.e. 600 gradient iterations) for R(k) = 50 is presented in
Fig. 9. All parameters for this simulation were the same as
in the experiment in Sec. 5.1, except R(k). In Fig. 9, it is seen
that some of the first gradient iterations do not reach the op-
timal solution for the given proximal-point variables within
the 50 repetitions. However the algorithm still converges
to the final optimal solution. Moreover, it converges even
faster, than in Fig. 5 since it does not spend that much time
searching for the optimal solution for the given proximal-
point variables.

To evaluate the behavior of the algorithm in the case
of incomplete gradient iterations, we have performed sim-
ulations with the same parameters as in Sec. 5.2, only the
parameter R(k) has been set to 50 (R(k) = 50 ∀0 < k < K).
The experiment has been repeated 50 times for each field
size and the results have been evaluated as a maximum, av-
erage and minimum number of iterations needed to achieve
a 0.01 % deviation of the Lagrangian function from the opti-
mal value. The number of needed proximal-point iterations,
in dependence on the number of nodes in the network, is pre-
sented in Fig. 10. It is seen that the number of the needed
iterations is slightly bigger than the number in the previous

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800
Number of the proximal−point iterations

Number of nodes in the network

N
um

be
r 

of
 th

e 
pr

ox
im

al
−

po
in

t i
te

ra
tio

ns

Fig. 6. Number of proximal-point iterations needed to achieve
0.01 % deviation from the optimal value.
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Fig. 7. Number of gradient iterations in the 1st proximal-point
iteration needed to achieve 0.01 % deviation from the op-
timal value.
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Fig. 8. Number of the gradient iterations in dependence on the
index of the proximal-point iteration for the field size 10.
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Fig. 9. Lagrangian progress for incomplete gradient iterations.
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Fig. 10. Number of proximal-point iterations needed to achieve
0.01 % deviation from the optimal value in the case of
an incomplete gradient iteration.

Sec. 5.2 (see Fig. 6). However the algorithm still converges
to the final optimal solution.

5.4 Node Communication Capacities
To demonstrate the behavior of the algorithm in the

case of the node communication capacities, described in
Sec. 4, we have performed an experiment with the same pa-
rameters as in Sec. 5.2, except for the capacity constraints.
The link capacities have been replaced by the node capac-
ities µl = 3maxm∈M ∑

N
n=1 s(m)

in,n. The computation has been
repeated on random networks 100 times for each field size.

The statistical results are presented in Figs. 11, 12 and
13 . It is seen that the progress of the number of the itera-
tions of the algorithm for the node capacities is similar to the
problem with the link capacities.
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Fig. 11. Number of proximal-point iterations needed to achieve
0.01 % deviation from the optimal value for the node
capacities.
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Fig. 12. Number of gradient iterations in the 1st proximal-point
iteration needed to achieve 0.01 % deviation from the
optimal value for the node capacities.
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Fig. 13. Number of the gradient iterations in dependence on
the index of the proximal-point iteration for the field
size 10, for the node capacities.
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6. Conclusion
In this paper we have presented a distributed algo-

rithm for the energy optimal data flow routing in sensor net-
works. We have described the routing problem as a multi-
commodity network flow optimization problem and used the
dual decomposition method to get the distributed algorithm.
The algorithm needs no central computational node, which
rapidly increases the robustness of the algorithm in the case
of partial network damage. The algorithm uses only peer-
to-peer communication between the neighboring nodes. We
believe that the principle of the algorithm and the approach
used to its derivation can be used to solve many different
problems in the sensor networks area, like resource sharing,
network localization, object tracking, etc.

In future work we are going to improve the perfor-
mance of the algorithm, using a partial knowledge about the
network and extend the synchronous algorithm to an asyn-
chronous one, which can solve the termination problem in
a more practical way. Furthermore, we want to evaluate,
how much the asynchronous/synchronous algorithm is able
to adapt the routing subject to the network changes.
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