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Abstract. The broadband approximations for shaped-
beam doubly curved reflector antennas with primary feed 
(rectangular horn) producing uniform amplitude and 
phase aperture distribution are derived and analyzed. They 
are very valuable for electromagnetic compatibility analy-
ses both from electromagnetic interference and suscepti-
bility point of view, because specialized more accurate 
methods such as physical optics are only used by antenna 
designers. To allow quick EMC analyses, typical values, 
beamwidth changes, sidelobe levels and aperture efficien-
cies are given for frequency changes approximately up to 
four times operating frequency. A comparison of approxi-
mated and measured patterns of doubly curved reflector 
antennas shows that the given approximation could be 
reliably used for analyses of pattern changes due to very 
broad frequency changes.  
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1. Introduction 
An antenna design requires a compromise between 

extensive calculations and the fabrication and measurement 
of prototypes. For example, when designing large and 
expensive antennas, the high fabrication cost justifies the 
time required for analysis. Silver [1] provides the founda-
tion for an analysis based on aperture theory and physical 
optics (induced currents on the reflector). That remains the 
main techniques of design for reflectors [2], which are 
extremely large in wavelengths, as various numerical 
methods such as method of moments will converge to the 
correct solution but they could be very time consuming. 
The given methods could be reliable for very narrow fre-
quency band but they are only used by antenna designers. 
If antenna patterns are considered for very broad frequency 
ranges, it could be very useful to use very simple approxi-
mations, which are not time consuming. That is very bene-
ficial for electromagnetic compatibility (EMC) analyses 
both from electromagnetic interference (EMI) and suscep-
tibility (EMS) point of view.  

The characteristics of function c(u,t), which approxi-
mates patterns of shaped-beam reflector antennas for broad 
band (out of operating frequencies) with primary feed (rec-
tangular horn) producing uniform amplitude and phase 
aperture distribution are derived. A comparison of approxi-
mated and measured patterns of doubly curved reflector 
antennas is given. 

2. Shaped-Beam Reflector Antennas 
Various radar applications impose beam-shaping 

requirements upon the antenna. The shaped-beam doubly 
curved reflector antenna is a classical reflector type pro-
ducing a narrow beam in one plane and a shaped beam in 
the other, which was described in 1940’s [1]. Radar an-
tenna design should be done using suitable software. The 
far-field radiation of antenna, shown in Fig. 1, can be cal-
culated using aperture method or physical optics [1] – [8]. 
Considering radar antenna systems, it is necessary to ana-
lyze not only radiation pattern of an antenna but various 
related problems. In the early 1960’s, the set of programs 
computing the shape and the radiation pattern of the doubly 
curved reflector has been developed [5]5], [6], [7]. Several 
Czech radar reflector antennas have been designed and 
hundreds of systems have been produced [9], [10]. 

 
Fig. 1. Doubly curved reflector antenna with observation 

point P. The antenna system is defined by the XYZ 
(R) system. The primary feed assembly is defined 
by the xyz (rφ)  system with origin O. 

The electric field of doubly curved reflector antennas 
(shown in Fig. 1) for constant  cuts, which are perpen-
dicular to symmetry ZX plane, is given by [6]  
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where K is a constant,  is the wavelength, and D is the 
reflector Y dimension. A function f1(Y) is given by both the 
reflector geometry and the primary feed pattern. This 
method is similar to [8] but it is more sophisticated. The 
antenna system is defined by the XYZ system, where the 
far-field observation point P is defined by distance R and  
and  angles with unit vectors iR , i and i . However, the 
assembly of primary feed, which is usually in the origin, O, 
of the xyz system, is defined by the xyz system. Primary 
feed radiation patterns for φ and  angles could be calcu-
lated using various possibilities [6], [7], [11] (such as verti-
cal or horizontal polarizations, pyramidal or conical horns, 
measured or calculated patterns and one, two or four 
horns). The phase of incident vector Ei could be changed, 
and therefore reflector systematic surface errors, primary 
feed phase errors and relatively small changes of primary 
feed positions (a few wavelengths), when amplitude 
changes could be neglected, may be computed. Whereas 
the integrals were evaluated by employing a 3000 point 
double Simpson's Rule for the maximum reflector di-
mension approximately 46 wavelengths [8] and the re-
flector should be subdivided into many patches because the 
phases of the currents change rapidly with position on the 
reflector, and the analysis must be repeated with finer and 
finer patches until the result converges [2], the used 
method of integral evaluations was much faster (time de-
creased by an order of magnitude – usually about 300 
points were used for the reflector dimension approximate-
ly 170 wavelengths). That was thanks to fact that the 
special method [7], [12] were used for integration in the 
symmetry ZX plane and the Gaussian integration [13] for 
constant  cuts. Gaussian integration has been analyzed 
both analytically and experimentally (hundreds of several 
antenna types were measured) [6], [7], [9], [14] to [16] 
with the excellent agreement between the calculated and 
measured data. 

Even if the above method is quite satisfactory and 
various kinds of general-purpose software are now avail-
able, they are only used by antenna designers. Therefore 
approximations, which are suitable for EMC specialists, 
are derived below. Since a function f1(Y) is given by both 
a reflector geometry and a primary feed pattern it is neces-
sary to find out some simplifications. The effect of reflec-
tor geometry is relatively small for shallow reflectors 
(larger focal length-to-diameter ratio) and then the primary 
feed pattern is very important. If various details (such as 
vector character and phases of incident waves) are 
neglected, then primary feed patterns F() could be used 
instead of f1(Y) function. When the E-plane of rectangular 
horn (waveguide) is perpendicular to symmetry ZX plane, 
then E-plane feed patterns F() are given by 
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where  = (a/) sin , a is the width of the rectangular 
aperture,  and  are spherical coordinates of horn as is 
shown in Fig. 1.  

Equation (1) could be approximately written as 
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where K1 is a constant, t = (a/) sin z, z is the half 
subtended angle of the reflector, and u = (D/) sin . 

Equation (3) contains two parameters, which are 
rather complicated functions of the wavelength. Therefore, 
the analyses of u and t parameter effect on c(u,t) function 
are performed. Of course, the approximation (3) does not 
consider phases and neglect various details, and therefore it 
could not be expected that (1) and (3) have the same 
accuracy. 

The following relation is valid for constant a and z 

 t = (a/) sin z =K2f (4a) 

where K2 is a constant and f is the frequency. Similarly, the 
following relation is applicable for constant D 

 u = (D/) sin  = K3f sin  (4b) 

where K3 is a constant. 

Considering (3), (4a) and (4b) it can be seen that the 
function c(u,t) could be proposed as pattern approxima-
tions for very broad frequency range. Increasing the feed 
beamwidth improves the illumination but increases the 
spillover. The efficiency peaks when the feed 10-dB 
beamwidth is approximately the subtended angle of the 
reflector. It is clear that the feed has a -10 dB reflector edge 
taper, when t  2.3. Usually, t  2.3 for the operating fre-
quency. If pattern changes are analyzed for about four 
times operating frequency, it is necessary to consider t 
parameter changes approximately for range 0  t  10 ac-
cording to (4a). 

3. Function c(u,t) 
Equation (3) implies 
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The c(u,t) values could be calculated using a Gaussian 
integration [13]. 

The following equation is valid for t = 0, when 
sin (tx)/(tx) = 1 
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Of course, a uniform distribution corresponding to the 
above equation cannot be realized for any reflector. 

The following equation is valid for u = 0 
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where Si(t) is a sine integral [13]. 
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The graphs of N = 20 logc(u,t) are shown in Fig. 2 
for various constant t parameters. They could be used for 
determination of N sidelobe levels and the half-power 
beamwidths, u3, which may be used for 3 beamwidth 
calculations using (4b). The N sidelobe levels relative to 
the c(0,t) values (solid line) and cmax(u,t) maximum values 
(dashed line) for given t are shown in Fig. 3. The u3 beam-
widths relative to the c(0,t) values (solid line) and cmax(u,t) 
maximum values (dashed line) are shown in Fig. 4. 

 

Fig. 2. Function N = 20 logc(u,t) for various constant t. 

 
Fig. 3.  Sidelobe levels relative to the c(0,t) values (solid line) 

and cmax(u,t) maximum values (dashed line). 

The half-power beamwidths and directivity (gain) of a 
relatively large planar array or aperture antennas are related 
by the well-known simple approximate equation. The half-
power beamwidths in the symmetry ZX plane changes very 
slowly and therefore the u3 beamwidths are substantial only 
[4]. Hence, the aperture efficiency q [1], [2], which is the 
ratio of the gain of the antenna and the gain of an ideal 
uniformly illuminated aperture, could be approximately 
given by  
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The aperture efficiency q is shown in Fig. 5. 

 
Fig. 4.  The u3 half-power beamwidths relative to the c(0,t) 

values (solid line) and cmax(u,t) maximum values 
(dashed line). 

4. Comparison of Approximations and 
Measurements  
It is well known [1], [2], [3] that aperture theory does 

not accurately predict the pattern characteristics of electri-
cally small horns (on the order of a wavelength or less in 
size). Diffraction effects from the flange or rim around the 
horn (also considered to be edge currents flowing on the 
outside surface of the horn) markedly influence the pattern. 
If the primary feed width is a   then equation (2) gives 
E-plane pattern, which differs from measurements. Empiri-
cal data were collected and reduced to simple formulas for 
small rectangular horns based on aperture size only [1], [2]. 
Similarly, simple reflector feeds can be approximated with 
Gaussian beams [2], [7]. Another possibility is a concept of 
an equivalent a width, which is found by fitting radiation 
patterns to measured data [5], [6], [7]. Of course, the 
equivalent a dimensions are changing according to fre-
quency changes and the equivalent a width could be equal 
to the physical a = 110 mm for higher frequencies. 

 
Fig. 5.  Aperture efficiency q. 

Several methods controlling antenna beamwidths for 
aperture widths approximately equal to one wavelength 
were proposed such as [18]. The mouth modifications can 
improve the radiation patterns and input impedance 
matching. However, the c(0,t) values should be used with 
care for these cases. Probably an equivalent a width con-
cept could be useful, especially for antenna designers. 

The doubly curved reflector of RL-41 antenna with 
two beams [4], [9] was measured for comparison (meas-
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ured frequency range of 2.7 to 10 GHz). Antenna parame-
ters were D = 5 m, a = 110 mm and z = 52o, i.e. t = 2.54 
for f = 2.8 GHz. The parameter t is changed with frequency 
according to (4a). The u3 beamwidths according to Fig. 4 
could be easily used for calculation of 3 beamwidths with 
the aid of (4b). The measured beamwidths of a lower beam 
for  = 0o and  = 3o cuts according to coordinate system 
shown in Fig. 1 are depicted in Fig. 6. The sidelobe levels 
of a lower beam for  = 0o and  = 3o cuts according to 
coordinate system shown in Fig. 1 are depicted in Fig. 7. It 
follows from Fig. 6 and 7 that the measurements, approxi-
mations and detailed calculations [6] for several frequen-
cies were done. Therefore, some detailed results can be 
only shown here. The lower beam patterns for  = 3o cut 
and 3 frequencies are only depicted in Fig. 8. That show 
measurements for f =2.8 GHz (solid line) and f = 6 GHz 
(dashed line) and approximations using c(u,t) functions for 
f = 2.8 GHz (crosses) and f = 6 GHz (circles). The radiation 
patterns for radar operating frequency band (2.7 to 
2.9 GHz) and near-by frequencies are very similar, and 
therefore the measurements and approximations are not 
presented. That is clearly demonstrated by calculations [6] 
for f = 3 GHz (dot-dashed curve). 

 

Fig. 6. The -3 dB beamwidths 3 of the lower beam.  
Approximations using c(u,t) for a = 110 mm (solid 
line) and approximations using c(u,t) for equivalent 
(variable) a dimensions (dashed line). Measurements 
for  = 0o (crosses) and  = 3o (circles) cuts. 

 
Fig. 7.  The sidelobe levels relative to maximum values of 

given pattern cuts for the lower beam. Approximations 
using c(u,t) for a = 110 mm (solid line) and 
approximations using c(u,t) for equivalent (variable) 
a dimensions (dashed line). Measurements for  = 0o 

(crosses) and  = 3o (circles) cuts. 

Of course, there are many valid reasons for the differ-
ences between approximations and measured values. They 
are created by approximation inaccuracies as phase char-
acteristics of horn, amplitude horn pattern changes due to 
horn quadratic phase errors and horn higher mode effects, 
which are not considered. Manufacturing errors such as 
inaccuracies due to produced reflector and astigmatism 
(both the feed and the reflector could have unequal phase 
centers in different planes) create phase errors, which are 
directly proportional to the frequency. 

It is well-known [1], [2] that a far-field measurement 
distance R is usually considered to be  

 


22D
R   (9) 

where D is the reflector size – see Fig. 1. At that distance, 
the phase error across the aperture from a point source 
antenna is π/8. The distance is not sufficient for low-
sidelobe antennas because quadratic phase error raises the 
measured sidelobes. The measurements has been taken in 
R = 1 240 m, i.e. the condition (9) is only fulfilled for fre-
quencies f < 7.5 GHz. Therefore, the higher sidelobes and 
broader beamwidths are obtained for measured patterns 
(especially for higher frequencies). As usual, for far-field 
measurements, the other measurement errors are due to 
multipath rays created by ground and nearby objects re-
flections. These errors change due to the frequency varia-
tions. They are not monotonic with frequency. 

 

Fig. 8.  Lower beam patterns.  = 3o measurements for 
f =2.8 GHz (solid line) and f = 6 GHz (dashed line), 
approximations using c(u,t) functions for f = 2.8 GHz 
(crosses) and f = 6 GHz (circles) and calculations [6] 
for f = 3 GHz (dot-dashed curve). 

Considering the above errors the most important are 
manufacturing inaccuracies, which are discussed in detail 
[2], [3] and therefore they are not analyzed. However, it is 
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necessary to notice that utilization of two beams (and 
therefore two horns, which cannot be placed at the same 
focus) causes that the antenna is more sensitive from the 
manufacturing tolerance point of view than an antenna 
with one horn at the focus. It could be deduced that the 
pattern approximations using c(u,t) functions could be 
satisfactorily used for analyses of changes for broad 
frequency ranges. 

The well-known simple formula of gain estimation 
considering beamwidths was analyzed both for various 
amplitude distributions and experimental data [4], [19], 
[20]. This could be very useful from EMC point of view as 
the c(u,t) function gives beamwidth approximations. How-
ever, relatively small pattern changes for a perpendicular 
ZX plane could be rather complex as horns of doubly 
curved reflector antennas can be complicated - such as [9].  

5. Conclusions 
The properties of c(u,t) functions, which approximate 

patterns of shaped-beam reflector antennas for very broad 
frequency range (out of operating frequencies), have been 
derived and analyzed. That could be very useful for EMC 
analyses both from EMI and EMS point of view as spe-
cialized more accurate methods are only used by antenna 
designers. Of course, thanks to dimensions of horn input 
waveguide, the frequencies below cutoff could not be ana-
lyzed. On the other hand, the c(u,t) functions could im-
prove analyses for higher frequencies. Considering EMI 
the parasitic oscillations of radar with doubly curved re-
flector antenna could be very dangerous, and therefore 
pattern information is demanded. The EMI filters (such as 
[21]) could be used for suppression of EMI, which pene-
trates through the power network. Similarly, due to exter-
nal interferences, pattern information of doubly curved 
reflector antenna is demanded from radar EMS point of 
view. The c(u,t) function gives beamwidth approximations 
that could be used for simple formula of gain estimation.  

The typical properties of c(u,t) functions are given. 
Graphs of c(u,t) are shown in Fig. 2. Sidelobe level 
changes are depicted in Fig. 3. Fig. 4 and 5 are graphs of 
beamwidths and aperture efficiency q. The parameter t 
changes have been considered for range 0  t  10. That 
usually corresponds four times operating frequency. 

The following conclusions can be derived for c(u,t) 
functions: 

 Values of c(0,t) functions decrease with increasing t 
as is shown in Fig. 2. 

 The beam splitting is created for t > 3/2 according to 
Fig. 2. 

 The sidelobes are minimal for products of approxi-
mately  and maximal for odd products of approxi-
mately /2 (Fig. 2 and 3). This phenomenon is con-
nected with edge distribution [2]. Step transitions on 

the aperture edges produce high sidelobes, while 
tapering the edge reduces sidelobes. The sidelobe 
envelope of peaks is related to the derivative of the 
distributions at the edges. 

 The beamwidth increases with increasing t as is 
shown in Fig. 4. 

 The aperture efficiency q decreases with increasing t 
as is shown in Fig. 5. 

The approximations and measured patterns of doubly 
curved reflector antenna with two beams are compared. 
The equivalent a width concept could be very useful, espe-
cially for antenna designers. However, that is usually un-
available for EMC experts. On the other hand, the changes 
are not substantial from the EMC point of view.  

It can be concluded that pattern approximations using 
c(u,t) functions characterize satisfactorily pattern changes 
due to frequency changes over a broad frequency range. 
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