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Abstract. In this paper new versatile precision full-wave
rectifiers using current and/or voltage conveyors as active
elements and two diodes are presented. The performance
of these circuit solutions is analysed and compared to the
opamp based precision rectifier. To analyze the behavior of
the functional blocks, the frequency dependent RMS error
and DC transient value are evaluated for different values of
input voltage amplitudes. Furthermore, experimental results
are given that show the feasibilities of the conveyor based
rectifiers superior to the corresponding operational ampli-
fier based topology.
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1. Introduction
In applications such as ac voltmeters and ammeters,

signal-polarity detectors, averaging circuits, peak-value de-
tector rectification function is of great importance [1]. Be-
cause of the threshold voltage of the diodes, simple passive
rectifiers operate inaccurately, if low-voltage signals are an-
alyzed. Therefore precision rectifiers employing active ele-
ments have to be used.

Probably the most known precision rectifiers are based
on operational amplifiers (opamps) [1]. However, because
of the finite slew-rate and effects caused by diode commuta-
tion, these circuits operate well only at low frequencies [2],
[3]. This problem can be overcome by the use of current con-
veyors (CCs), where the diodes are connected to the high-
impedance current outputs of the active elements. In [4]–[7]
the same precision full-wave rectifier is analyzed (Fig. 2b).
It uses two second-generation CCs and four diodes. To fur-
ther extend the frequency range the voltage [4], [7] or current
[6], [7] biasing scheme can be used. Another precision full-
wave rectifier is presented in [8] that is based on the stan-
dard opamp rectifier shown in Fig. 2a. Here, the OPA1 is
replaced by the operational conveyor and later by second-
generation CC [3]. A full-wave rectifiers using second-

generation and dual-X current conveyors are presented in [9]
and [10], respectively, where the required diodes are suitably
replaced by NMOS transistors. The use of fully differential
operational transconductance amplifiers (BOTA) operating
in weak inversion region for the design of precision full-
wave rectifiers is presented in [11], which is based on the
idea discussed in [12], where simple transconductance am-
plifiers (OTA). Here, the transconductance of OTA is con-
trolled by the current derived from the input signal to be rec-
tified. In another group of precision rectifiers, a transistor
connected to the current output of an active element oper-
ates as a switch. For this purpose the current conveyor [13]
or transconductance amplifiers [14]–[16] are used.

All the circuit solutions in [4]–[16] operate in the volt-
age or mixed mode. The current research in analog func-
tional block design gets more focused on the realization of
the current-mode (CM) circuits [17]. In this area mainly the
frequency filters can be mentioned, e.g. [18]–[21]. How-
ever, a number of current-mode full-wave rectifiers can also
be found in the literature [22]–[25], where unity-gain cells or
current differencing transconductance amplifiers are used.

In this paper two new precision full-wave rectifiers em-
ploying current and/or voltage conveyors together with two
diodes are presented. They are of minimal configuration and
can operate both in the voltage- and current-mode. The be-
havior of these circuits is compared to the known conveyor
based solution presented in [4]–[7] and also to the opamp
based full-wave rectifier. Simulation and furthermore exper-
imental measurement results are given that show the feasi-
bility of the newly designed circuits to rectify signals up to
1 MHz and beyond with no or little distortion.

2. Current and Voltage Conveyors
In 1968, the current conveyors were presented for the

first time [26], however they did not find any significant us-
age since the operational amplifiers were more attractive at
that time. Current conveyors received considerable attention
after the second (CCII) [27] and later third (CCIII) [28] gen-
eration current conveyors were designed. These elements are
now advantageously used in applications, where the wide
bandwidth or current output response is necessary. Nowa-
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days, different types of current conveyors are described that
are mostly based on the CCII, e.g. current controlled CC
(CCCII) [29], differential voltage CC (DVCC) [30], or elec-
tronically tunable CC (ECCII) [19], [31]. The behavior of
a four-terminal CCII (Fig. 1(a)) is described by the follow-
ing equations:

vX = vY, iY = 0, iZ+ = iX, iZ− =−iX. (1)

Another flexible building block for active circuit syn-
thesis is the voltage conveyor (VC) [32]. Based on the dual-
ity to current conveyors, first-, second-, and third-generation
voltage conveyors can be described [33]. The current dif-
ferencing buffered amplifier (CDBA) [34] can be identified
as the differential current voltage conveyor (DCVC+) [35].
In [36]-[38], the universal voltage conveyor (UVC) has been
described (Fig. 1(b)). It is a 6-port active element that has
one voltage input X, two current differencing inputs YP and
YN, and two mutually inverse voltage outputs ZP and ZN.
The auxiliary voltage input W is used to determine the gen-
eration of the voltage conveyor [38]. The relation between
the terminal currents and voltages is described by the follow-
ing set of equations:

iX = iYP− iYN, vYP = vYN = vW, (2)

vZP = vX, vZN =−vX. (3)
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Fig. 1. Circuit symbol of (a) the four-terminal CCII, (b) the uni-
versal voltage conveyor UVC.

3. New Precision Full-Wave Rectifiers
The standard opamp based circuit from Fig. 2(a) [1] is

a connection of an inverting half-wave rectifier (OPA1) and
summing amplifier (OPA2). For the desired full-wave recti-
fication the following conditions have to be fulfilled:

R1 = R2, R4 = 2R3, (4)

or
R2 = 2R1, R3 = R4, (5)

which generally means that the half-wave rectified signal
must be amplified two times higher than the original input
signal vIN(t), either more commonly by the summing ampli-
fier (according to (4)) or by the half-wave rectifier (according
to (5)).

A well known circuit topology of the full-wave recti-
fier using two second-generation current conveyors CCII+ is

shown in Fig. 2(b) [4]-[7]. Both CCIIs form a differential
voltage-to-current converter. During the positive and neg-
ative input cycle the output currents make only the diodes
D2, D4 and D1, D3 active, respectively. On the resistor
R2 the output current is converted back to voltage. Both
circuits from Fig. 2 can operate only in the voltage-mode,
or in case of the conveyor based rectifier (Fig. 2(b)) in the
transadmittance-mode.

D2

D1

_

+

_

+

vIN(t) vOUT(t)

R1 R2 R3

R4

R5

OPA1

OPA2

Y

X

Z+

CCII1

D1

D2
Y

X

Z+

CCII2D3

D4R2

R1

VB

vIN(t) vOUT(t)

(a)

(b)

Fig. 2. Voltage-mode (a) standard opamp based [1], (b) known
conveyor based full-wave rectifier from [4]-[7].

New conveyor based precision full-wave rectifiers
working in the current-mode are shown in Fig. 3, where
the structure in Fig. 3(a) and Fig. 3(b) employs two second-
generation current conveyors, and one CCII and one univer-
sal voltage conveyor, respectively. Both solutions are of min-
imal configuration since only two active elements and two
diodes have to be used. Routine analysis leads to the follow-
ing expressions of the output currents:

iOUT+(t) = |iIN(t)|, iOUT−(t) =−|iIN(t)|. (6)

In theory, since the input signal iIN(t) is directly ap-
plied to the current terminal X of the CCII1 and the cur-
rent responses are taken from the Z-terminals of the CCII2
(Fig. 3(a)) or from the X-terminal of the UVC (Fig. 3(b)) the
input and output impedances of the proposed rectifiers are
zero and infinitely high, respectively. Therefore, both recti-
fiers are easily cascadable.

Adding the resistors R1, R2, or R3 into the current-
mode rectifiers from Fig. 3, new voltage-mode precision rec-
tifiers can be obtained (Fig. 4). The resistors represent sim-
ple voltage-to-current and current-to-voltage converters and
the output voltages can be expressed as:

vOUT1+(t) =
R3

R1
|vIN(t)|, vOUT1−(t) =−

R2

R1
|vIN(t)|, (7)

vOUT2+(t) =−vOUT2−(t) =
R2

R1
|vIN(t)|. (8)
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Fig. 3. New current-mode precision full-wave rectifiers using
(a) two current conveyors, (b) one current and voltage
conveyor.
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Fig. 4. New voltage-mode precision full-wave rectifiers using
(a) two current conveyors, (b) one current and voltage
conveyor.

In Fig. 4, the input voltage vIN(t) is directly con-
nected to the Y-terminal of the CCII1 and therefore the input
impedance of both rectifiers is infinitely high in theory. In
case of circuit from Fig. 4(b), the output impedance is theo-
retically zero, since the ZP and ZN terminals of the universal
voltage conveyor represent outputs of voltage followers (3).

4. DC and RMS Error Analyses
To evaluate and compare the accuracy of the voltage-

mode full-wave rectifiers from Fig. 2 and Fig. 4 the DC value
transfer pDC and RMS error pRMS have been analyzed [39]:

pDC =

∫
T

yR(t)dt∫
T

yID(t)dt
, (9)
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Fig. 5. DC value transfer for (a) VB = 0 V, (b) VB = 0.6 V of the
rectifiers from Fig. 2a (dotted line), Fig. 2b (dash-dotted
line), Fig. 4a (dashed line), and Fig. 4b (solid line), for
input voltage amplitudes 10 mV, 100 mV, and 300 mV.

pRMS =

√√√√√√
∫
T
[yR(t)− yID(t)]

2 dt∫
T

y2
ID(t)dt

(10)

where the yR(t) and yID(t) represent the actual and ideally
rectified signal and T is the period of the input signal. The
ideal behavior of the rectifier is characterized by the values
pRMS = 0 and pDC = 1.

Using (9) and (10) the behavior of the newly proposed
voltage-mode rectifiers (Fig. 4) has been compared with the
standard opamp and known conveyor based circuits from
Fig. 2(a) and Fig. 2(b). As active elements the universal
current conveyor UCC-N1B and universal voltage conveyor
UVC-N1C have been used [38], [40]. The current and volt-
age transfer bandwidths of the UCC and UVC are about
35 MHz [40]. Therefore, in the standard opamp based rec-
tifier the AD8656 has been used [41]. The diodes are gen-
eral purpose 1N4148 and all resistors are 1 kΩ (in Fig. 2(a)
R3 = 500 Ω).
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Fig. 6. RMS error for (a) VB = 0 V, (b) VB = 0.6 V of the recti-
fiers from Fig. 2a (dotted line), Fig. 2b (dash-dotted line),
Fig. 4a (dashed line), and Fig. 4b (solid line), for input
voltage amplitudes 10 mV, 100 mV, and 300 mV.

The simulation results of the frequency dependent DC
value transfer and RMS error for chosen values of ampli-
tudes VIN are shown in Fig. 5 and Fig. 6, where the solid,
dashed, dash-dotted and dotted lines stand for the circuits
from Fig. 4(b), Fig. 4(a), Fig. 2(b), and Fig. 2(a), respec-
tively. (The solid and dashed lines are almost identical.) If
the frequency increases and/or amplitude decreases distor-
tions occur and the pDC decreases below one and pRMS in-
creases. From Fig. 5 and Fig. 6 it is evident that the best
results are achieved with the new minimal configuration rec-
tifiers. For an appropriate value of the bias voltage (here
VB = 0.6 V), the conveyor based precision rectifiers can op-
erate at higher frequencies (Fig. 5(b), Fig. 6(b)).

5. Experimental Measurements
The behavior of the voltage-mode precision full-wave

rectifiers from Fig. 4 has also been verified by experimental
measurements and compared to the known opamp (Fig. 2(a))
and current conveyor (Fig. 2(b)) based solutions. In Fig. 7
the DC transfer characteristics are shown. Due to high volt-
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Fig. 7. Measured DC transfer functions of the voltage mode rec-
tifier from Fig. 2(a) (dotted line), Fig. 2(b) (dash-dotted
line), Fig. 4(a) (dashed line), and Fig. 4(b) (solid line) for
(a), (b) VB = 0 V, (c) VB = 0.6 V.

age gain of the opamps, the DC error of the circuit from
Fig. 2(a) is minimized and the DC transfer is almost ideal
(in Fig. 7 dotted line). The non-unity voltage and current
transfers of the current conveyors cause higher DC error of
the conveyor based full-wave rectifiers (Fig. 7(b)). This er-
ror is more evident, mainly in the zero crossing area, if a bias
voltage is applied (Fig. 7(c)).
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(a)
 

(b)

Fig. 8. Transient responses of the precision full-wave rectifiers from Fig. 2a (trace 1), Fig. 2b (trace 2), Fig. 3c (trace 3), Fig. 3d (trace 4) for
a signal amplitude 50 mV and frequencies (a) f = 10 kHz (VB = 0 V), (b) f = 1 MHz (VB = 0.6 V).

Although the DC error of the conveyor based full-wave
rectifiers is higher, from transient analyses (Fig. 8) it can be
seen that the behavior of the conveyor based circuits is su-
perior to the opamp full-wave rectifier. For an input volt-
age with the 50 mV amplitude at frequency 10 kHz the be-
havior of all rectifiers is almost identical, only the conveyor
based circuit from Fig. 2(b) shows significant error in the
zero crossing area (Fig. 8(a)). However, when the frequency
grows voltage biasing is necessary. In Fig. 8(b) the measure-
ment results for an 50 mV amplitude input sinusoidal voltage
at frequency 1 MHz are shown (VB = 0.6 V). At this fre-
quency the rectification function of the opamp based circuit
is totally missing (trace 1), however it can be still observed
in the conveyor based circuits.

6. Conclusion
In this paper the performance of conveyor based preci-

sion full-wave rectifiers has been analyzed and compared to
the standard opamp based topology. Two new minimal con-
figuration rectifiers have been presented, that employ cur-
rent and/or voltage conveyors and two diodes. These recti-
fiers can work in the voltage-, current-, and transimmittance-
mode. Simulation and experimental measurements were per-
formed that prove the feasibility of the proposed conveyor
based full-wave rectifiers.
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