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Abstract. This paper is devoted to the noise analysis and
noise suppression in a system for double station observa-
tion of the meteors now known as MAIA (Meteor Automatic
Imager and Analyzer). The noise analysis is based on acqui-
sition of testing video sequences in different light conditions
and their further statistical evaluation. The main goal is to
find a suitable noise model and subsequently determine if
the noise is signal dependent or not. Noise and image model
in the wavelet domain should be based on Gaussian mix-
ture model (GMM) or Generalized Laplacian Model (GLM)
and the model parameters should be estimated by moment
method. Furthermore, noise should be modeled by GMM or
GLM also in the space domain. GMM and GLM allow to
model various types of probability density functions. Finally
the advanced denoising algorithm using Bayesian estimator
is applied and its performance is verified.
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1. Introduction
The meteor detection and analysis is a basic topic in

the field of astronomy and has a large tradition at the Astro-
nomical Institute of the Czech Academy of Sciences of the
Czech Republic.

Unfortunately, the detection of meteors is done during
a night when light conditions are poor. Bad light conditions
suggest noise generation in an image function or in video
frames. The presence of noise in the acquired data is an un-
wanted event. The most of the papers are devoted to the
analysis, modeling and suppression of additive noises (e.g.
additive Gaussian noise). However, real imaging systems
are contaminated by noise, which should be seen as additive
only in special cases and only in a certain range of illumina-
tion. Several types of image noises with their models repre-
sented by probability density functions (PDF) are discussed

in [1]. Gonzalez introduces Gaussian, Reyleigh, Gamma,
Exponential, Uniform and Impulse noise and proposes sim-
ple pattern with several patches of constant grayscale values
for imaging system testing. Hence, the basic noise parame-
ters can be estimated directly at the patches on the acquired
testing pattern by using basic statistics (sample mean, sam-
ple variance etc.). Boncelet [2] summarizes among others
the noise processes (additive, multiplicative) and transforms
between them.

Fig. 1. Simulated testing pattern with grayscale patches equal to
31, 63, 127, 255.

A large number of imaging systems especially in as-
tronomy contain CCD sensors [3]. A CCD sensor should be
seen as a source of several noises. In the case of night sky
imaging, an acquired image is contaminated by Poisson [4]
noise (also known as photon counting noise) as a result of the
process, where the light represented by photons is used as an
information carrier. Starck [4] et al. also notes the so-called
read out noise of CCD modeled usually as the additive Gaus-
sian noise. Furthermore, astronomers use long exposure time
because of the bad light condition during night sky acquisi-
tions. Long exposure times suggest nonnegligible thermally
generated charge called dark current. Dark current should
be simply removed by a dark frame, which maps thermally
generated charge in CCD. However, in the case that the dark
frame is not available, the Bayesian methods should be ap-
plied. Our previous work deals with dark current analysis,
modeling and suppression [13], [14].

We use the discrete wavelet transform (DWT) for im-
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age representation. The DWT represents a powerful tool
for image denoising, compression etc. in many applica-
tion fields. Lyu and Simoncelli [5] model natural photo-
graphic images represented in multiscale basis using Gaus-
sian Mixture Model. The authors proposed an algorithm
for the additive Gaussian noise suppression on this frame-
work. In the field of Geoscience, Amirmazlaghani [6] in-
troduced a Bayesian-based speckle-suppression method that
employed the 2-D generalized autoregressive conditional
heteroscedasticity (2D-GARCH) model for wavelet coeffi-
cients of log-transformed SAR images. Nevertheless, in
astronomy the wavelet based denoising plays an important
role. Schmitt, Starck et al. [7] studied The Large Area
Telescope (LAT), the main instrument of the Fermi gamma-
ray Space telescope. The two main scientific objectives, the
study of the Milky Way diffuse background and the detection
of point sources, are complicated by lack of photons. Hence,
they proposed a powerful Poisson noise removal method on
the sphere which is efficient on low count Poisson data. This
method uses the isotropic undecimated wavelet transform
(IUWT) and the curvelet transform as spherical multi-scale
transforms. The undecimated wavelet transform gives out-
standing results in denoising [8].

2. Noise Analysis in Imaging Systems
Noise analysis presents a crucial procedure applied to

an imaging system. The results of that analysis allow to pro-
pose an advanced denoising algorithm for noise suppression.
The noise analysis should be based on acquisition of a test-
ing pattern, which contains several patches with constant
greyscale levels from white to black [1]. In the simplest case,
a pattern for the measurement of transfer function should be
used. The example of the simulated testing pattern along
with its histogram can be seen in Fig. 1 and Fig. 2. If we
consider contamination of the pattern by additive gaussian
noise, the histogram is changed in accordance with Fig. 2
b). This figure illustrates that the noise parameters are in-
dependent of the signal value. Furthermore, the parameters
of the Gaussian noise should be simply estimated from the
testing pattern using basic statistics. There is a histogram of
the simulated testing pattern contaminated by Poisson noise
(also known as photon counting noise) in Fig. 2 c).

2.1 Data Acquisition in Current System
Current system for meteor observation consists of ob-

ject lens Jupiter 2/85 mm or eventually Arsat 1.4/50 mm,
image intensifier of the second generation Mullard XX1332
and S-VHS camera Panasonic. The video from the camera is
saved on a magnetic tape and then digitized in the following
way: 768x576 pixels, 25 frames per second, 256 grayscale
levels, non-compressed.

Since the system for meteor observation is installed at
Astronomical Institute, the testing of the system was done by
acquisition of so-called flat field video sequences. The flat
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Fig. 2. a) Histogram of the simulated testing pattern, b) His-

togram of the pattern contaminated by additive Gaussian
noise with σ = 10, c) Histogram of the pattern contami-
nated by Poisson noise.

field video sequences are given by acquisition of the area
with approximately constant grayscale level (acquisition of
the sky through a paper after sunset). The time after sunset
was set to 7, 18, 28, 32 minutes to simulate the area with
constant greyscale level. However, the acquired frames also
map the non-uniform illumination of the system. Hence we
create the so-called master field from certain frames from
several video sequences. Master field frames are computed
simply by averaging all frames from sequences to suppress
the analyzed time variant noise. The example of the master
field frame is depicted in Fig. 3. Hence now it is possible to
eliminate the non-uniform illumination in all video frames
by subtraction the master flat field from the frames to be an-
alyzed. Now we have the video frames suitable for further
noise analysis.

2.2 Noise Analysis in Current System
As mentioned above, all frames from several video se-

quences are corrected by the master field frame. Hence we
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(a)

(b)

Fig. 3. Master flat field created by using the video sequences ac-
quired 7 minutes after sunset.

have frames with eliminated non-uniform illumination of the
observation system. Firstly we evaluate an optimized his-
togram of the corrected frames to find the noise PDF. The
quality of the histogram shape depends mainly on its bin
width. There are many approaches to the bin width BW op-
timization, e.g. [12] and [11]. In [12] it has been shown
that the optimal histogram bin size, which provides the most
efficient unbiased estimation of the PDF, is given by

BW = 3.49σI−
1
3 (1)

where BW is the bin width of the histogram, σ denotes the
standard deviation of the distribution, I presents the number
of samples. A similar, but more robust, result was obtained
by Freedman and Diaconis (summarized in [11]). Their bin
width can be written as

BW = 2(x0.75− x0.25)I−
1
3 (2)

where the term in the parentheses denotes so-called in-
terquartile range, x0.75 is the 75th percentile and x0.25 is the
25th percentile.

Fig. 4 a) and b) show the optimized histograms of the
chosen area (in the center of the frame, 320x320 pixels) in
the frames at all times after sunset along with the sample
variances D(n) = 1

I−1 ∑
I
i=1 (ni−E(n))2 of noise n with sub-

tracted mean value E(n) = 1
I ∑

I
i=1 ni. The dependency of

D(n) on the maximum values of the master flat field is de-
picted in Fig. 6. Histograms are similar to Gaussian PDF.

We applied Kolmogorov-Smirnov test, the null hypothesis
(samples come from Gaussian distribution) at significance
level α = 0.05 was rejected. Hence it is necessary to model
the noise by using a more general model.

We choose the model for heavy-tailed noise based on
exponential. The PDF of heavy-tailed noise is given by

pn(n;µ,s,ν) =
e−|

n−µ
s |

ν

Z(s,ν)
, n ∈ (−∞;∞) (3)

where µ denotes the mean value, parameter ν presents gen-
eralization in the sense of the shape of the heavy tailed PDF
and the parameter s controls the width of the PDF. The func-
tion Z(s,ν) = 2s

ν
Γ
( 1

ν

)
, where Γ(x) =

∫
∞

0 tx−1e−tdt, normal-
izes the exponential to a unit area. The parameters of PDF
given by (3) should be estimated simply by using the system
of moment equations [9]. For simplicity we consider noise n
with µ = 0, the second and fourth moment runs as

m2(s,ν) =
s2Γ
( 3

ν

)
Γ
( 1

ν

) , m4(s,ν) =
s4Γ
( 5

ν

)
Γ
( 1

ν

) . (4)

In accordance with [9], the parameters estimation should be
simplified using kurtosis

κn =
m4(s,ν)
m2

2(s,ν)
=

Γ
( 5

ν

)
Γ
( 1

ν

)
Γ2
( 3

ν

) . (5)

The above mentioned model is well known as the Gen-
eralized Laplacian Model (GLM) and it is usually used to
model filtered images (e.g. wavelet coefficients of high fre-
quency bands). Fig. 4 c) and d) show that the models fit the
optimized histograms well. All models are plotted in the log-
arithmic domain, because the quality of the fit is clearly vis-
ible. The fits are satisfactory also in the sense of Jeffrey di-
vergence [10] (a measure of the distribution similarity), (6):

JD =
I

∑
i=1

[
pa

i ln
(

pa
i

0.5(pa
i + pb

i )

)
+ pb

i ln
(

pb
i

0.5(pa
i + pb

i )

)]
(6)

where I stands for the number of PDF samples, pa denotes
the model PDF and pb presents the normalized histogram of
the dark frame.

2.3 Data Acquisition in New System
The new system for meteor observation is in its basic

design similar to the above described analog system which
is still in use at the Astronomical Institute. The new sys-
tem consists of fast lens Pentax SMC FA 1.4/50 mm, im-
age intensifier of the second generation Philips (Photonis)
XX1332 and progressive scan monochrome camera JAI CM-
040GE with GigE Vision interface equipped with fast lens
Pentax H1214-M 1.4/12 mm. The camera in the test setup
in Fig. 5 was delivering an uncompressed video stream of
61.15 frames per second with resolution of 776x582 pixels
and 256 greyscale levels. The shutter was set to 1/100 s ex-
posure time.
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Fig. 4. Histograms of the chosen area of the flat fielded frames at particular times after sunset, subtracted mean value E(n), a) 7 minutes,
E(n) = 0.12, D(n) = 6.13, b) 32 minutes, E(n) = 0.47, D(n) = 3.39 and normalized histograms along with the models, c) 7 minutes,
ν = 1.57, s = 3.04, JD = 0.0062, d) 32 minutes, ν = 1.62, s = 2.30, JD = 0.0081.

Fig. 5. Test setup.

The system was installed on a test bed in optical labora-
tory thus the test video could be captured in well controlled
conditions. The testing has been done in similar manner
as in the case of current analog system as described above.
The flat field video sequences of the area with approximately
constant luminance level were captured. The captured scene
was made of a whitepaper screen evenly illuminated with
LOT-Oriel halogen light source. The broadband light beam
of the halogen lamp was filtered with Carl Zeiss interfer-
ence filter into the narrowband around 650 nm wavelength
where the peak sensitivity of the XX1332 image intensifier
is. The average luminance of the screen was maintained con-
stant while capturing a set of 100 frames for each luminance
level. The luminance was controlled with a stabilized LOT-
Oriel power supply and checked with the NIST certified ra-

diometric light meter system.

Video frames acquired as described above contain ob-
vious non-uniformity in the brightness level which is not de-
sirable for the noise analysis. To solve this problem the same
approach in data preprocessing was applied as in the case of
the current analog system. The master field was calculated
from 100 frames in the videosequence acquired at the same
average luminance level. This master field in the particular
test sequence is again simply an average of all 100 frames
in this sequence. Then the non-uniform illumination in all
video frames was eliminated by subtraction of the master
flat fields from the frames in each test sequence. Noise anal-
ysis was then conducted in the same way as for the current
analog system.

2.4 Noise Analysis in New System
We optimized noise analysis in the new system to be

comparable with the analysis in current system. Hence, the
procedure of analysis was similar as in the case of current
system still installed at the Astronomical Institute. Firstly,
the master flat fields were created from the acquired video
sequences and all frames in each sequence were corrected.
The optimized histograms estimated from corrected video
frames have shown that the noise should again be modeled
by GLM given by (3). The chosen histograms with the near-
est maximum flat field values (see Tab. 1) as in the measure-
ment of current system are depicted in Fig. 7 a) and b). The
dependency of D(n) on the maximum values of the master
flat field is depicted in Fig. 6.
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Figure 5. and 9. a) b) c) d)
maximum value of flat
field, current system

253 233 195 130

maximum value of flat
field, new system

251 234 191 135

Tab. 1. The maximum values of master flat fields for the current
and new system.
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Fig. 6. Dependency of variance D(n) on the maximum value of
master flat fields of the current and new system.

3. Proposed Denoising Algorithm
Nowadays, we have the first image data of night sky

from the new system. The new system is just installed.
Hence, we tested the proposed denoising algorithm on the
acquired testing video sequences. Previous chapters show
that noise should be modeled by one dimensional model
called GLM. This suggests an utilization of Bayesian esti-
mator (MMSE or MAP) for the estimation of the denoised
image function. Furthermore, an image function presented
by video frame should be modeled also by GLM. Hence, it
is suitable to apply Discrete Wavelet Transform to the ac-
quired data.

3.1 Discrete Wavelet Transform
In the case of an image denoising, the undecimated

wavelet transform (UWT) is better to be used. The undeci-
mated transform produces the same number of wavelet coe-
ficients at each scale and it is also called Stationary Wavelet
Transform (SWT). SWT is computed using so-called à trous
algorithm [17]. The decimated wavelet transform [16] is
shift variant. This characteristic limits the denoising perfor-
mance [15].

There is a basic structure for the decimated wavelet
transform called dyadic decomposition shown in Fig. 8.
Here, Hi and Lo present the impulse response of the high
pass filter and the low pass filter respectively, 2 ↓ denotes
down sample by the factor of 2. If the signal is filtered us-
ing the scheme in Fig. 8 then four subbands (matrices) are
obtained, i.e. diagonal details (HH) γD(d)

p+1, vertical details

(HL) γD(v)
p+1, horizontal details (LH) γD(h)

p+1 and signal ap-
proximation (LL) γA0. The matrix γA0 presents the signal
which is to be decomposed.

We utilized both transforms, the decimated and undec-
imated one. The image data were decomposed up to the

5th decomposition level using the filters derived from the
wavelet Daubechies6.

An important task in image processing while using
wavelet transform is to chose a suitable wavelet [15]. Firstly,
it is known that image denoising becomes simpler in a sparse
wavelet representation (i.e. only a small number of wavelet
coefficients with large magnitude). This statement [15] holds
mainly for decimated wavelet transform (e.g. dyadic decom-
position). Secondly, it is necessary to pay attention to the
image quality. Thus, the goal is to produce as many wavelet
coefficients that are close to zero as possible. This depends
on the vanishing moments Nv and on the support size K of
the analysis wavelet. For the image quality, the regularity
and symmetry of the synthesis wavelet are important. In
the orthogonal case, it is difficult to achieve a large number
of vanishing moments and a small support size at the same
time. The theoretical limit is K = 2Nv−1 and is achieved in
the Daubechies wavelets, usually denoted as dbNv.

We optimized the mother wavelet in the sense of RMSE
(Root Mean Square Error) (13). We minimize the RMSE be-
tween original image x and the denoised image x̂. The pro-
cess of optimization is given by

ĥ = argmin
h=[h1,...hk]

R M SE (x, x̂) (7)

where ĥ = [h1, . . .hk] denotes the optimal decomposition fil-
ter derived from the mother wavelet. We tested the orthogo-
nal and compactly supported wavelets: Daubechies (Db1-
Db10), Symlet (Sym2-Sym8) and Coiflet (Coif1-Coif5).
The optimization was done numerically using our testing
data. However, the results of optimization showed that all
tested wavelets give practically the same results. Only the
results of optimization of the shortest filters (e.g. derived
from Haar wavelet) were considerably worse as it should be
assumed.

3.2 MMSE (Minimum Mean Square Error)
For the simplicity, the additive noise is assumed y =

x+n, where y denotes the noisy observation (acquired data),
n presents noise and x is a clean image function. The con-
ditional mean of the posterior PDF provides a least square
estimation of x. MMSE [9] estimator runs as

X̂(Y ) =
∫ +∞

−∞
pN(y− x)pX (x)x dx∫ +∞

−∞
pN(y− x)pX (x) dx

. (8)

The capital letters in (8) mean the wavelet domain. The
MMSE estimator is applied on all detailed wavelet bands up
to the 5th decomposition level, whereas the image parame-
ters are estimated using the system of the moment equations.
The denoised image is obtained by inverse wavelet transform
applied on the modified detailed wavelet bands.

3.3 Method of Moments
Similarly as in [13], we define the theoretic central mo-

ments of Y . The second moment m2 of Y is given by addition
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Fig. 7. Histograms of the chosen area of the flat fielded frames with the nearest maximum flat field value as in the measurement of current sys-
tem, subtracted mean value E(n), a) E(n) =−0.60, D(n) = 3.23, b) E(n) = 0.28, D(n) = 3.37 and normalized histograms along with the
models, c) ν = 1.78, s = 2.38, JD = 0.0113, d) ν = 1.71, s = 2.36, JD = 0.0101

of several GLM moments

m2(Y ) =
δ2Γ

( 3
ε

)
Γ
( 1

ε

) +
s2Γ
( 3

ν

)
Γ
( 1

ν

) = m2(X)+m2(N) (9)

where δ and ε are the GLM parameters of the signal. The
fourth moment m4 of Y runs as

m4(Y ) =
δ4Γ

( 5
ε

)
Γ
( 1

ε

) +
6s2δ2Γ

( 3
ν

)
Γ
( 3

ε

)
Γ
( 1

ν

) +
s4Γ
( 5

ν

)
Γ
( 1

ν

)
= m4(X)+6m2(N)m2(X)+m4(N). (10)

The parameters of the signal GLM will be estimated using
kurtosis

κX =
Γ
( 5

ε

)
Γ
( 1

ε

)
Γ2
( 3

ε

) (11)

=
m4(Y )−m4(N)−6m2(N)(m2(Y )−m2(N))

(m2(Y )−m2(N))2

From (9) we should derive

δ =

√
(m2(Y )−m2(N))

Γ
( 1

ε

)
Γ
( 3

ε

) . (12)

The values of the moments should be estimated from
the data using the sample moments. The kth central sample
moments of X is given by Mk(X) = 1

I ∑
I
i=1 (Xi−E(X))k.

3.4 Results
There will be presented the results obtained by de-

noising algorithm based on Bayesian estimator and GLM

columns

Hi

Lo

rows

rows

2

2

Hi

Lo 2

columns

2

Hi

Lo 2

columns

2

columns

1
d

pD

1
h

pD

1
v

pD

1pA

pA

Fig. 8. Implementation of 2-D dyadic decomposition.

model for the noise and image function. Two implementa-
tions of the discrete wavelet transform were applied: UWT
and DWT. The noise characteristics were found by measure-
ment and statistical analysis. Tab. 2 contains the obtained
RMSE, where RMSEi (should be seen as a standard devi-
ation of the noise) denotes the error computed between the
noisy flat field and the master flat field. The denoising per-
formace is illustrated by the values of RMSEo evaluated be-
tween master flat field and the denoised flat field. The RMSE
is given by

RMSE =

√
1
I

I

∑
i=1

(x− x̂)2 (13)

where x denotes the original image and x̂ is the denoised im-
age. The first row of Tab. 2 ROFF denotes range of flat field
values.The chosen denoised images and the corresponding
noisy images are depicted in Fig. 9.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9. Flat fields denoised using DWT a)-d), using UWT e)-h) acquired at certain light conditions and the noisy flat fields i)-l), i) ROFF 23-255,
j) ROFF 22-251, k) ROFF 19-191, l) ROFF 5-53.

ROFF RMSEi UWT: RMSEo DWT: RMSEo

23-255 1.89 1.29 1.33
22-251 1.82 1.17 1.22
19-191 1.67 0.93 0.97
12-115 1.87 0.84 0.82
5-53 2.26 0.60 0.52
2-21 1.99 0.36 0.31

Tab. 2. The summary of RMSE.

4. Conclusion
Two systems for the detection of meteors were tested.

The current system was measured at four time instants af-
ter sunset and the measurement of the new system was done
in a wide range of illumination. After that, the four nearest
measuring points in the sense of maximum value of master
flat field were found in the results of the measurement of the
new system.

The estimated values of shape parameters ν of GLM
are approximately 1.7 for the new system and approximately
1.5 for the current system. These parameter values suggest
that the central limiting theorem was not well satisfied. This
means that the generated noise is more general (in the sense
of the parameter ν) than the Gaussian random variable. The
GLM model was used instead of GMM for simplicity.

The dependency of the variance of maximum values
of the master flat field in Fig. 6 shows that the variance of
the new system changes slightly in a certain range. Unfor-
tunately, the new system will probably be operating at very
low illumination, where the generating noise will be signal
dependent.

An algorithm for image denoising was proposed. Since
we modeled both signals (image and noise) by the GLM
model in the wavelet domain, we are able to denoise video
frames contaminated by noise with variable shape of its PDF.
Furthermore, a specific hexagonal mosaic in the images is
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given by the channels on micro channel plate of image in-
tensifier.
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