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Abstract. This article describes the indoor IRLA (Intelli-
gent Ray Launching Algorithm), which originates from an
efficient outdoor propagation prediction model. Implemen-
tation and validation are given in detail. An indoor office
scenario is selected and simulations via the IRLA model and
two other reference models have been performed. Predic-
tions are analyzed and recommendations are given. Results
show that the indoor IRLA model is suitable for indoor wire-
less network planning and optimization process.
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1. Introduction
Radio wave propagation prediction modeling has be-

come increasingly important in wireless network planning
and optimization [1] [2] since the emergence of 3G net-
works. The propagation predictions serve as a fundamen-
tal output for the advanced analysis and optimization such
as capacity and link budgets etc. The identification of QoS
(Quality of Services) or weak signal spots are based on the
estimation of propagation prediction. At present, in order to
build an efficient indoor DAS (Distributed Antenna System),
the candidate antennas need to be tested and the possible
combination is evaluated, which will give an optimal solu-
tion for indoor antenna placement. The solution is based on
propagation prediction modeling because the minimal cov-
erage ratio has to be considered.

Currently, radio wave propagation models consist of
two kinds: small-scale and large-scale. On the one hand,

small-scale propagation prediction deals with fast fading (i.e.
the variation of signal strength over a short period of time
such as one wavelength). For example, Rice fading distri-
bution has been used to model the LOS (Line-of-Sight) case
while Rayleigh fading distribution is being used widely in
NLOS (None-Line-Of-Sight) [3]. On the other hand, the
large-scale propagation prediction computes the average sig-
nal strength over a longer period of time. In this case, the
predictions will give path loss based on (1):

PL = PRx −PTx (1)

where PRx represents the signal strength (dBm) at the loca-
tion of the receiver and PTx represents the signal strength
(dBm) at the location of the transmitter.

The modeling of large-scale radio wave propagation in
indoor environments plays a crucial role in the investigation
of 3G/4G network planning applications (such as localisa-
tion). In indoor environments, there are usually more irreg-
ular objects and material types, which make modeling much
more complex, compared to outdoor environments.

Many outdoor large-scale propagation models such as
[4] are accelerated based on the simplification that outdoor
buildings are 2.5-D polygons with flat roofs. However, as
objects in indoor environments can be of any shape and in
any position, such as lamps hanging at different heights, etc.
Indoor radio wave propagation predictions are usually more
challenging because these irregular objects impact greatly
the indoor propagation characteristics (such as fast fading).

In general, large-scale propagation models fall into two
kinds: empirical and deterministic. Empirical models are
mainly based on empirical factors such as distance or fre-
quency. They are computational fast but they do not con-
sider much environmental information so their accuracy is
limited. For example, the ITU (International Telecommuni-
cation Union) Model for Indoor Attenuation [5] is based on
a single equation and the path loss prediction is valid only for
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frequency ranging from 900 MHz to 5200 MHz and floors
from 1 to 3. Similarly, LAM (Linear Attenuation Model) [6]
relies on measurement data, based on which a linear equation
can be built. On the other hand, deterministic approaches
take into account the environmental information such as ob-
ject positions and the corresponding materials. Generally
speaking, these approaches are more time-consuming com-
pared to empirical models but a higher level of accuracy can
be obtained. For example, in [7], the authors propose an
accelerated dominant ray-based method for indoor scenar-
ios. Despite many acceleration techniques such as [8], [9]
and [10], the use of accurate propagation modeling for in-
door scenarios remains limited due to the complex indoor
propagation environment.

Apart from these two categories, some propagation
models consider both empirical and deterministic fac-
tors, which are categorized as semi-empirical (or semi-
deterministic) approaches. For example, MOTIF [11] can
be considered as a semi-deterministic approach that includes
stochastic factors and deterministic computation. Such mod-
els usually perform faster than deterministic approaches such
as ray tracing and their accuracy is high in some scenarios.
For example, MOTIF is limited in 2-D scenarios.

Ray-based methods can be categorized as deterministic
approaches. They are widely used in propagation prediction.
Compared to FDTD (Finite Difference Time Domain)-like
methods [12], they consume less memory and are far more
efficient. These ray-based methods compute the possible
rays between the emitter and receivers in complex environ-
ments and they need to search the rays to compute reflections
and diffractions, based on Descartes’ laws. Hence, they tend
still to be very time-consuming if the environment is com-
plex, i.e., if there are a large number of obstacles. Usually,
the accuracy of ray-based methods is limited by the number
of rays that can be computed within a reasonable time.

Different methods to accelerate ray-based methods are
proposed in the literature. For example, in [8], a preprocess-
ing stage is required to compute the visibility tree between
obstacles and in [7], the authors propose a dominant path
model which only computes the few rays that comprise of the
ones that give the most contribution. Depending on the ways
of computing the rays, ray-based methods can be further cat-
egorised into ray tracing and ray launching. On the one hand,
ray tracing computes the rays backwards from the receivers.
For example, the reflection ray can be computed by: (a) mir-
roring the receiver at the targeted facet, (b) computing the
intersection point between line segment from transmitter to
the mirrored point and the facet, (c) launching the reflection
from the intersection point to the receiver direction. Ray
tracing gives precise rays between a transmitter and a re-
ceiver and is thus suitable in point-to-point scenario where
there are only a few receiver locations of interests. How-
ever, if the number of prediction locations is considerably
large, ray tracing will suffer from a long running time, espe-
cially in scenarios where there are many complex obstacles
which will incur more data-intensive operations such as in-

tersection tests. Besides, ray tracing treats the calculation of
neighbor pixels equally the same i.e., the computational time
is roughly linearly proportional to the number of receiver lo-
cations.

In contrast, ray launching computes the rays from the
emitter. Ray launching is an image-sampling method which
uses discrete rays by an angle. Inevitably, gaps will be cre-
ated gradually after the rays undergo reflections and diffrac-
tions. In order to solve this problem, a reception sphere [13]
can be used to capture the missing rays. More rays can be
launched to improve the accuracy but this will slow down the
computation. In general, ray launching walks through the
rays and computes the reflections, transmissions and diffrac-
tions iteratively. The pixels gain experiences from its pre-
vious pixels along the same path, which is faster than ray
tracing. Ray launching is suitable in point-to-many scenar-
ios, such as coverage prediction. The ray launching may be
more suitable for wireless network planning and optimisa-
tion in indoor scenarios because generally it is computation-
ally more efficient than ray tracing and it provides a rele-
vantly acceptable level of accuracy.

1.1 Related Work and Contribution
The authors have originally developed the IRLA model

for outdoor scenario [2]. In [14] and [15], the authors pro-
posed and implemented the parallel IRLA based on POP-
C++ (Parallel Object-oriented Programming in C++) [16]
and a performance speed up was observed. In [17], the IRLA
model was improved by smart algorithms to solve angular
dispersion of ray launching and thus the accuracy is im-
proved. In [18], the authors extended the IRLA model to in-
door scenarios and it has been validated by the measurement
campaign proposed in [19]. The results show that the indoor
IRLA model is promising because it is capable of provid-
ing accurate results within a short amount of time. In [20],
the authors further combine the IRLA model with a FDTD-
like method: MR-FDPF (Multi Resolution Frequency Do-
main ParFlow) [21] for an indoor to outdoor scenario where
the accuracy was validated by the measurement campaign.
In [22] and [23], the authors combine the IRLA model with
MR-FDPF for outdoor to indoor scenarios. Based on the
aforementioned work on the IRLA model [24], This article
will contribute by providing:

• Details on the calibration of the indoor materials.

• A simplified 2.5-D indoor IRLA model.

• Simulation results that are compared with two refer-
enced models: MR-FDPF [21] and COST231-Multi
Wall [25].

The rest of the article is organised as follows. First, the
outdoor model IRLA [2] [14] will be briefly described. Next
the details will be investigated to make this model suitable
for indoor scenarios. The modified 2.5-D IRLA model for
indoor scenarios will also be presented. The calibration of
materials will be described. Next an indoor measurement
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campaign will be described, which is used to validate the
model. Performance (such as speed, accuracy) will be anal-
ysed by contrasting the results obtained via MR-FDPF and
COST231-Multi Wall models. The comparison between the
3-D and 2.5-D IRLA models are also discussed with rec-
ommendations given and finally, the future prospectives are
described, which concludes this article.

2. IRLA Model
The idea of the IRLA model is based on the discrete ray

launching algorithm. The input to this model relies on the
creation of a 3-D discrete data set which contains the vector
building data, material items associated to each obstacle, and
the discrete data set made given a defined resolution. Finally,
the basic unit of the discrete data set contains the property
values (such as edge or corner) and index to the object list.
Each object list stores the polygon coordinates and index to
the material table. The IRLA model traces the rays from the
emitter and by adopting the techniques proposed in [17], the
angular dispersion of discrete ray launching is eliminated.

The outdoor IRLA model [2] comprises three main
components: LOS (Line-of-Sight), VD (Vertical Diffrac-
tion) and HRD (Horizontal Reflection and Diffraction). The
LOS component deals with visibility pixels, collecting di-
rect paths from emitter and most importantly the secondary
pixels for the use of VD and HRD. Mathematically and re-
versely, the VD component calculates the dominant multi-
ple roof-top diffractions by a fast pixel checking principle
that draws the shortest edges between the emitter and re-
ceivers. The HRD component performs the actual 3-D ray
launching. The rays are abandoned when they hit the roofs
due to the fact that there seldom exist dominant rays which
are a combination of vertical and horizontal planes [4]. The
IRLA model for outdoors has been tested to show suitabil-
ity (in the aspects of both speed and accuracy) in use for
wireless network planning applications [24] and the inherent
principle of IRLA is easily parallelizable. In [14], a paral-
lel implementation of IRLA via POP-C++ (Parallel Object
Oriented Programming in C++) has been presented and per-
formance is evaluated.

2.1 3-D IRLA Model
In [18], the IRLA model was first extended to the in-

door scenario. Modifications of the outdoor IRLA model
were made. First the component VD has to be eliminated
from the indoor IRLA model because it is not applicable to
the calculation of vertical diffractions in indoor scenarios.
Instead, the indoor IRLA component of HRD is enhanced
by also calculating vertical diffractions. The LOS and HRD
components are kept as two fundamental components with
slight modifications. It is known that ray launching suffers
from the angular dispersion problem because ray launching
is a sampling method which launches the rays that are sepa-
rated by an angle. Both components are optimized via a new

approach proposed in [17] to solve the angular dispersion of
ray launching. Rays are collected and the multipaths are ob-
tained and hence channel characteristic such as PDP (Power
Delay Profile) can be simulated. The process of IRLA pre-
diction for indoor scenarios starts with launching rays in all
3-D directions. Based on the discrete data set, the resolution
and the number of cubes along each dimension (X, Y and Z)
are known. Therefore the number of discrete rays required
can be obtained by connecting the emitter to all the cubes at
the fringe of the scenarios [17], which can be found in (2):

N = 2NxNy +2(Nz −2)(Nx +Ny −2) (2)

where N is the number of discrete rays and Nx, Ny, Nz are the
number of cubes in dimension X, Y and Z respectively.

This ensures that no pixels are missing due to angular
dispersion of ray launching [17] from the LOS component.
The principle is useful in distribution of rays, e.g. in parallel.
The secondary cubes collected in component LOS serve as
input to the HRD component, which iteratively follows the
discrete rays. Rays disperse as they propagate, which causes
coverage gaps. To solve this, an intelligent procedure is pro-
posed in [17], which dynamically accounts for rays that fill
the gaps. Material indices are recorded within each cubic
entry and applied to discrete rays that are being followed.
Based on a few measurement locations, the material values
are calibrated once and applied to predictions.

2.2 2.5-D Modification of IRLA
In-building deployment usually involves planning and

optimization of a multi-floor building in indoor DAS. Thus,
the predictions obtained from the indoor IRLA model need
to account for the propagation characteristics such as trans-
mission between floors, and the use of a discrete data set
may not be so efficient if the scenario is large (such as
a skyscraper) and the resolution is fine-grain.

It has been observed that the radio wave signal
strengths drop dramatically when they undergo a few trans-
missions through different floors. The trade-off between
speed and accuracy thus may be based on the assumption
that the signal strength affects a maximum of n (n >= 1)
floors, including the floor on which the emitter resides. Thus,
discrete data sets for each floor can be created individually
and combined during runtime in each prediction, which con-
sumes less memory and improves the efficiency.

In order to develop a propagation model suitable for
indoor DAS planning and optimisation process, the 2.5-D
IRLA model for indoor scenarios can thus be proposed based
on the following.

• The LOS component accounts for 3-D LOS rays and
corresponding antenna pattern values are estimated and
added.

• The HRD component computes the NLOS rays in the
horizontal plane in order to improve the efficiency.
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• Similarly to the outdoor VD component, the 2.5-D in-
door IRLA model employs a VD component that cuts
vertically to the indoor scenario which accounts for the
vertical diffraction rays.

In order to validate the 2.5-D indoor IRLA model, the
following section will describe an indoor scenario. The mea-
surement was conducted and compared to four models: the
3-D IRLA model, the 2.5-D IRLA model, the MR-FDPF
model and the COST231 Multiwall model, respectively.

3. Experiments

3.1 Scenario
Propagation models need to be validated by measure-

ments for the accuracy. The comparison analysis can aid the
improvement of the propagation models. In order to validate
the IRLA model, an indoor office (Fig. 1) has been selected
as the indoor testbed. The office has three rooms and is lo-
cated on the first floor. There are 255 polygons and more
than 1000 vertices all together. The dimension for this sce-
nario is 16× 9× 4 (m3). The materials found in the sce-
nario include: Glass, Wood, Metal, Plastic, and Concrete.
As shown in Fig. 1, there are cubicles in the middle, which
is a challenge for 2-D propagation models because in reality
the radio wave signals travel in vertical directions (such as
diffractions on the edges of desk).

Fig. 1. Indoor office; ‘X’: emitter; ‘A’: LOS, ‘B’: N-LOS.

3.2 Measurements
The emitter is a 3.525 GHz signal generator (power

6 dBm) with an omni-directional antenna (gain 2.8 dBi,
EIRP Equivalent Isotropically Radiated Power 8.8 dBm).
This frequency has been selected in order to study WiMax

indoor base stations. The emitter is located on the table
(1.35 meter height) in the meeting room (see Fig. 1) and
measurement locations (0.98 meter height) are positioned by
the grid pattern on the floor (see Fig. 2). This helps record-
ing positions without an indoor GPS (Global Position Sys-
tem). To avoid as much signal variation (e.g. due to noise
disruption) as possible, a measurement campaign is carried
out when there are few people in the room. To avoid the
interference of human bodies when manually triggering the
spectrum analyzer, the measurement data of the first few and
last few points are removed. Several measurement snapshots
are taken to average the final signal strength. Around 200
measurement locations gridded by 0.5-meter-square [19] at
ground-level 1.5 meter height are chosen. The measurement
techniques and the removal of human body influence are de-
tailed in [19].

Fig. 2. Measurement locations, positioned by grid pattern on the
floor.

3.3 Calibration
It is not possible to know exact properties of materials

in every scenario. Therefore, a calibration process is needed
to adjust the properties of materials (such as conductivity).
The IRLA model provides the calibration process to make
the simulations fit into reality. A first run with defaulted pa-
rameters of materials is performed and the multipaths asso-
ciated to each measurement locations are obtained. Based
on the multipaths, the calibration process can be performed.
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Fig. 3. Calibration of the IRLA model based on simulated an-
nealing.

The 3-D path loss matrix can also be obtained by the
first run of IRLA. To make it even more efficient, only se-
lected layers (locations) can be considered. Multipaths in-
formation for selected locations are computed. With this in-
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formation, channel characteristics can be investigated. How-
ever, since the IRLA model computes the rays from the emit-
ter, the requirement for multipath data does not incur extra
overheads since this can be easily recorded together with the
path loss. To improve the accuracy of the model, a cali-
bration of the parameters, based on an SA (Simulated An-
nealing) approach, was implemented in [2] where the RMSE
(Root Mean Square Error) between the simulation and the
measurement is minimised. The calibration is based on the
multipaths i.e., one single IRLA simulation has to be per-
formed and all the rays are stored in memory.

The material parameters to be tuned can be considered
as a vector v. At each iteration of SA, v is adjusted and
the fitness is evaluated. Based on a probability, the v is ac-
cepted. The SA approach converges to an sub-optimal v fi-
nally (Fig. 3). The use of multipaths avoids rerunning the
simulation at each iteration of SA, because the fitness value
can be computed based on the multipath reached at each
measurement location.

4. Performance Evaluation
The indoor scenario described above (Sec. 3) is used to

validate the IRLA model. This section introduces the cali-
bration process of the IRLA model and experimental results.
Based on the prediction, comparisons can be investigated
and recommendations are given.

4.1 IRLA Validation
A single run using a standard PC (2.5 GHz CPU, 4 G

RAM) with this scenario takes around 1 minute for the com-
putation of the 3-D path loss and multipaths information.
The SA calibration takes around 2 minutes to complete and
v is obtained. The default parameters yield around 6 dB
RMSE (Figs. 4 and 5) on the first run. It can be observed
that there are some prediction points that are of large differ-
ences. This could be caused by the following:

• The materials and other network parameters (such as
path loss coefficients) are not calibrated.

• The measurement data itself may be affected by many
factors such as the variation of environment (such as
moving vehicles).

• The IRLA model may terminate the ray computations
at the early stage if the rays carry weak signal strengths
due to incorrect summation from uncalibrated materi-
als.

After proper calibration, the prediction results com-
pared to measurements show an agreement (Tab. 1), with the
3.5 dB RMSE and a mean error of 0.01 dB.
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Fig. 4. Error in dB before calibration: RMSE 6 dB.

Fig. 5. Prediction errors (dB).

Uncalibrated Calibrated
RMSE (dB) 6 3.5
Mean (dB) 3.2 0.01

Tab. 1. Calibration of 3-D IRLA.

It can be observed that most predictions are accurate
within the ranges of [−10,+10] dB difference. There are
few points that prediction tends to be either too optimistic or
pessimistic. From Fig. 5, the prediction errors can be visu-
alised geographically. It can be seen that the most optimistic
predictions are distributed within a short distance range from
the emitter and receivers (such as the locations near by the
refrigerator or behind the door). The pessimistic prediction
points are located far from the emitter. This may be used as
important evidence to further optimize the model.

4.2 Comparison with Reference Tools
In this section, the 2.5-D and 3-D IRLA model will

be compared with two reference models: MR-FDPF and
COST231 Multiwall.
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Fig. 6. Coverage prediction after calibration.

4.2.1 MR-FDPF Model
MR-FDPF [21] is a FDTD-like method but in the fre-

quency domain. MR-FDPF (Multi-Resolution Frequency
Domain Parflow) is based on the ParFlow model derived
in [26]. It is a finite difference approach similar to finite dif-
ference time domain method (FDTD) which has the advan-
tage of being able to compute all the reflections and diffrac-
tions without limitations since it solves the Maxwell’s equa-
tions [27].

The formulation of ParFlow is based on the transmis-
sion line matrix (TLM) method. In this approach (in 2-D)
the field is modeled by four flows corresponding to the four
cardinal directions. In each pixel, also referred to as a node,
scattering matrix is associated which efficiently models re-
flection and diffraction effects.

The advantage of ParFlow compared to FDTD is that
the four fields are scalar, thus reducing the number of vari-
ables (no E and H fields). In [26] a frequency domain im-
plementation of ParFlow was proposed. The advantage of
this formulation is that the steady state of the source can be
computed using a recursive formalism, instead of solving the
equations for the whole environments. Therefore, a multi-
resolution approach is used where the nodes are gathered
into multi resolution nodes (MR-nodes) and where the prob-
lem is divided into sub-problems, thus highly reducing the
overall complexity (mainly due to the need for inversion of
large matrices).

The MR-FDPF algorithm works into two steps. First,
a pre-processing phase where the environment is divided into
MR-nodes and where the scattering matrices are computed.
This phase does not depend on the sources to simulate but
only on the scenario. Therefore it only has to be performed
once. The second step is the propagation phase which works
on the boundary conditions: A source is recursively included
in larger space blocks up to the full space, and the back-
ward propagation is done by propagating incoming bound-
ary flows toward the separation line and down to the unitary
cells.

The advantage of MR-FDPF is that, due to the multi-
resolution approach, the computational phase of the propa-
gation of one source is very low compared to a time domain
implementation. However, when moving to 3-D implemen-
tations, the number of flows to compute increases and in such
case the frequency domain implementation has no obvious
advantages in term of complexity. Therefore this model is
usually restricted to 2-D.

In [28] MR-FDPF was successfully used for indoor net-
work planning and it was shown that, when considering flat
environments where the main propagation effects are in the
horizontal plane, it was possible to reach very high accuracy.
Moreover, a calibration of the method was also proposed to
compensate for these 3-D effects by changing the parameters
of the materials. The method was also extended to simulate
larger bandwidth, more details can be found in [29]. Due to
its accuracy, MR-FDPF is included in a Wifi network opti-
mization tool [30].

MR-FDPF has lower complexity than FDTD because
of its pre-processing and it directly solves the final Maxwell
equations without time information. At this stage, 2-D MR-
FDPF is usually tested due to much larger computational
complexity requirement when this model is applied in the
3-D cases. In order to use MR-FDPF to predict this indoor
scenario, some assumptions have to be made. First a cut
on receiver locations from full 3-D data is required. How-
ever, a 2-D scenario does not fully reflect the 3-D character-
istics by approximation of one cut. For example, a table not
blocking rays may be a reflected source, which is difficult
to model in 2-D. Fortunately, by calibration, similarly to the
IRLA model, 2-D MR-FDPF can adjust the material proper-
ties so that the accuracy can be improved. For example, rays
transmitted by a window do not attenuate much but this will
be treated as a heavy-thick wall in this 2-D scenario used by
MR-FDPF. By calibrating with measurements, this material
is adjusted.

4.2.2 COST-231 Multiwall Model
COST-231 Multi Wall [25], is a semi-empirical indoor

model, which only accounts for the attenuations for walls
and floors. Therefore, it does not compute reflection or
diffraction rays. The only output from this model is the
path loss/power prediction, which is an estimation based
on the material properties and the number of transmitted
walls/floors. This model is computationally efficient and it
does not require pre-processing. The running time of the
Multi Wall model is usually less than a few seconds. The
prediction errors tend to increase with the number of trans-
mitted walls or floors. e.g. the COST231 Multi Wall model
generally produces pessimistic results when the receiver lo-
cations are far from the emitter.

4.3 Comparison and Recommendations
Tab. 2 compares the prediction performance obtained

via the IRLA (2.5-D and 3-D) model, the 2-D MR-FDPF
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model and the COST231 Multi Wall model. All simulation
results are obtained after calibration. It can be observed that
these models generally give a high agreement (cf. Fig. 10)
between prediction and measurement. In a full 3-D scenario,
at least in this indoor scenario, 2-D MR-FDPF relies heavily
on the calibration without which, this model tends to give
large prediction errors due to inaccurate modeling of materi-
als. The accuracy before calibration for MR-FDPF is around
8 dB whilst this is dramatically improved to around 3.5 dB
due to calibration of the materials. For example, the emitter
is placed on a table and the table should be removed from
2-D cut, otherwise it will be treated as an obstacle in MR-
FDPF model. On the standard PC (AMD 64+ Dual, 4 GB),
the preprocessing for MR-FDPF takes around 3 seconds and
the computation time is less than 1 second, which is fast in
a small 2-D scenario. However, due to its 2-D character-
istics, some important ray phenomenal in 3-D are not effi-
ciently captured. For example, MR-FDPF treats the flows
in only 2-D, as they only propagate in the 2-D plane. Rays
bouncing by reflecting on the ceiling or floor are ignored.
The accuracy obtained though MR-FDPF is 3.5 dB RMSE
(0 mean error after calibration). The prediction via 2-D MR-
FDPF is designed for power level/path loss only, which does
not compute the delay information.

The 3-D IRLA model for indoors, as presented in this
article, is fully applicable in 3-D scenarios in which the
model is capable of capturing important 3-D dominant rays.
Compared to MR-FDPF, the IRLA models (3-D and 2.5-D)
do not require a preprocessing stage. However, since this
is a full 3-D model, all levels of receiver locations are com-
puted which requires longer computation time than 2-D MR-
FDPF. The timing for the 3-D IRLA model, at least for this
indoor scenario, is still within an acceptable range (less than
3 minutes) where it can be used to fully predict 3-D prop-
agation mechanism such as PDP, DS. The accuracy before
calibration via the 3-D IRLA model is around 6 dB by us-
ing standard parameters and this can be improved so that
a similarly high accuracy can be obtained (3.5 dB RMSE).
The 3-D IRLA model is not overly reliant on exact materi-
als, whereas this is of critical importance in ensuring high
accuracy for MR-FDPF models.

The 2.5-D IRLA model, computes the N-LOS rays in
horizontal plane, which is less time-consuming than the 3-
D IRLA model. The running time, compared to the full 3-D
IRLA model, is shortened to less 10 than seconds in this sce-
nario. The accuracy provided with the 2.5-D IRLA model is
still acceptable, with the RMSE equal to 4.9 dB. Therefore,
the 2.5-D IRLA model may be used as a compromise be-
tween speed and accuracy in indoor wireless network plan-
ning and optimisation.

Figs. 7 and 8 plot the rays generated by the 2.5-D and
3-D IRLA model. As 2.5-D IRLA only computes the NLOS
rays in the horizontal plane, it is faster but does not consider
diffractions rays or reflections rays in the vertical plane (such
as ground reflection rays).

Fig. 7. rays generated in the 3-D IRLA model.

Fig. 8. rays generated in the 2.5-D IRLA model.

3-D IRLA MR-FDPF Multi Wall 2.5-D IRLA
RMSE (dB) 3.5 3.5 5.6 4.9

Time (s) < 60 < 5 < 1 < 10

Tab. 2. Performance comparison.

Fig. 9 plots the fitting curves of PDF (Probability Den-
sity Function) of prediction errors in dB. It can be seen that
the 3-D IRLA model and MR-FDPF gives the highest accu-
racy (higher probability with small errors) while COST231
Multi-wall and 2.5-D IRLA models yield the similar accu-
racy in this indoor scenario.

The COST231-Multi Wall model [25], is extremely
computational efficient and this model also does not require
preprocessing. In this scenario, this semi-empirical model
obtains high accuracy, which is mainly because there are
few walls to penetrate. It is easy to calibrate with the losses
for each wall and floors. Therefore, an agreement can be
observed. However, the performance of this model is lim-
ited due to the absence of capturing reflection and diffraction
rays. For example, in a corridor where diffractions dominate,
COST231-Multi Wall model will fail. The running time for
this model is usually less than 1 second, and the accuracy
obtained generally depends on the scenarios.

By comparing these four indoor models, a recommen-
dation for their use can be given. COST231-Multi Wall is
efficient and is suitable for use when an estimation of indoor
coverage is required on an less complex building structure
such as the scenario presented in this article. MR-FDPF
should have high accuracy because it incorporates radio
wave propagation physics (a differential solver of Maxwell
equations) but, as 3-D MR-FDPF is time and memory con-
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Fig. 9. Fitting curves of PDF of errors.

suming and still under investigation, the 2-D MR-FDPF is
suitable only for indoor structures in which most propagation
phenomena take place horizontally in the 2-D plane. Thus, it
is not suitable in multi-floor propagation simulation, where
a full 3-D model is required. However, 2-D MR-FDPF is
capable of providing high accuracy on a floor after the cal-
ibration from measurements to correctly model the material
properties. 3-D IRLA does not rely on calibration and is
useful in prediction for multi-floor indoor structures or com-
plex, large indoor areas. If there are no measurements, IRLA
is preferred because it can be used to find coverage gaps
which may not be practically feasible for 2-D MR-FDPF and
COST231 Multi Wall models. The 2.5-D IRLA generally
gives a high level of accuracy and multipaths (2.5-D NLOS
rays and 3-D LOS rays). The advantage of using 2.5-D IRLA
model is that it provides an acceptable level of accuracy but
within a much shorter time than the full 3-D IRLA model.
Therefore, the 2.5-D IRLA model is suitable in some indoor
applications, such as DAS planning and optimisation.

5. Conclusion and Perspectives
This article describes an extended ray launching model,

IRLA, which was originally designed for outdoor scenarios.
A full indoor scenario (a typical office) is chosen to validate
the performance of this model. Comparisons with several
recommendations were made.

Compared with other models, the advantages of the 3-
D IRLA model are:

• It offers an accuracy similar to existing deterministic
tools.

• The full 3-D rays/prediction matrix are computed.

• It does not require preprocessing.

• It is fast compared to standard ray tracing methods.

Compared with the 3-D IRLA model, the advantages
of the 2.5-D IRLA model are:

• The 2.5-D IRLA model is even faster, providing a sim-
ilar execution speed to empirical models. Therefore it
is possible to test many indoor network configurations
within a short amount of time.

• The floor separation and horizontal NLOS rays com-
putation further improve the efficiency and it may im-
prove the efficiency of parallelism.

For example, further work includes the investigation
of prediction errors in NLOS cases for some locations. It is
also useful in validating the delay spread prediction via the
IRLA model through measurements.
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