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Abstract. This paper presents a general matrix algorithm
for analysis of digital filters. The method proposed in this
paper allows not only the analysis of the digital filters, but
also the construction of new structures of the canonic or non-
canonic digital filter. Equivalent filters of different structures
can be found according to various matrix expansions. The
structures can be calculated even from transfer function or
from state-space matrices and with the additional advantage
of requiring minimum number of shifting elements. Tradi-
tional research methods are not able to construct the system
with a minimum of the shifting operations.
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1. Introduction
The digital system with multiple input and output is

demonstrated in Fig. 1. It is very important for calculating
state matrices A, B, C and D of the circuit to number the
nodes in the order shown in the Fig. 1. The first numbers
must be put to the inputs of the circuit. Following numbers
must be placed to the output of the delay elements (z−1) and
the rest of numbers must be put to the output of the adders.
In general the digital system with multiple input and output
in Fig. 1 can be described by the following equations [1]
[2]:

0 =−Y(z)+FY X X(z)+FYU U(z)+FYV V(z)
0 =−U(z)+FUX X(z)+FUU U(z)+FUV V(z)
0 =−V(z)+FV X X(z)+FVU U(z)+FVV V(z)

(1)

or in matrix form (2), [2]

NS ·


X(z)
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= 0 (2)
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Fig. 1. Discrete structure with multiple input and output.

where NS in (2) is the signal-flow matrix that represents the
signal-flow graph of a digital system with multiple inputs
and multiple outputs

NS =

 F(Y X ) −I F(YU) F(YV )

F(UX) 0 F(UU)− I F(UV )

F(V X) 0 F(VU) F(VV )− I

 . (3)

X(z) is a vector of the input signals Xi, Y(z) is a vector of
the output signals Yi. U(z) is a vector of the delay elements
output signals Ui and V(z) is a vector of the adders output
signals Vi, see Fig 1. FY X is the transfer matrix output/input,
FY X = Y(z)/X(z) if U(z) = V(z) = 0. If we reduce the sig-
nals in the outputs of the adders Vi in (2), we obtain

NE ·

 X(z)
Y(z)
U(z)

= 0 (4)

where NE in (4) is a flow-state matrix and the matrices A, B,
C and D are state matrices of the digital system presented in
equation (5) as [3], [4], [5]

NE =

[
D −I C

z−1B 0 z−1A− I

]
. (5)

In the flow-state matrix, the matrices I and 0 are the iden-
tity and zero matrices respectively. If we reduce the matrix
equation (4), not taking into account the vector of the signals
Ui, we get the expression

N(2)
T ·
[

X(z)
Y(z)

]
= 0 (6)

where the transfer matrix N(2)
T can be defined by (7) as

[5], [6]
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N(2)
T =

[
D+C · (zI−A)−1 B; −I

]
. (7)

Sign NT
(2) =

[
n(2)21 ;n(2)22

]
,

then the element n(2)21 of the transfer matrix N(2)
T is the trans-

fer function H(z) and n(2)22 =−1

n(2)21 = H(z) = D+C · (zI−A)−1 B. (8)

2. Analysis of Parallel Adapter
The block of the parallel adaptor [7] [8] and its signal-

flow diagram is shown in Fig 2.
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Fig. 2. Parallel adapter (a) and its signal flow graph (b).

To obtain signal-flow matrix of the parallel adapter in
Fig. 2 (a) it is necessary to mark the nodes first. We label the
input with the number one and output with the number two.
To the outputs of the delay elements we shall put the number
3 and 4. Outputs of the adders are marked with numbers 5,
6 and 7. Signal-flow matrix N(7)

S of the parallel adapter in
Fig. 2(a) is

1 2 3 4 5 6

N(6)
S =

2
3
4
5
6


0 −1 0 1 0 1
0 0 −1 z−1 0 0
0 0 1 −1 −a1 −a2
−1 0 1 0 −1 0
0 0 1 0 0 −1

 . (9)

The element n(6)45 = −a1 because the multiplier −a1 is
connected in the signal-flow graph in Fig. 2 (a) between the
nodes 5 and 4. The element n(6)34 = z−1 because between the

nodes 4 and 3 a delay element z−1 is connected. The element
n(6)23 = 0 because no direct path from the node 3 to node 2
occurs. Furthermore in the signal-flow matrix nii = −1 and
ni2 = 0 for i ≥ 3. In order to obtain the transfer function we
must reduce the nodes 6, 5, 4 and 3. Reducing the 6th column
and row we get N(5)

1 2 3 4 5

N(5) =

2
3
4
5


0 −1 0 1 0
0 0 −1 z−1 0
0 0 1−a2 −1 −a1
−1 0 1 0 −1

 (10)

and reducing 5th column and row we obtain N(4)

1 2 3 4

N(4) =
2
3
4

 0 −1 1 1
0 0 −1 z−1

a1 0 1−a2 −a1 −1

 . (11)

To obtain state-flow matrix we must reduce the vector of the
signal V3, it means the 4th column and row in the matrix N(4)

1 2 3

N(3)
E =

2
3

[
a1 −1 2−a1 −a2

z−1a1 0 −1+ z−1(1−a1 −a2)

]
.

(12)

If we compare equations (12) and (5) we can construct the
state-space scalars A, B, C and D as

D = a1, C = 2−a1 −a2,

B = a1, A = 1−a1 −a2.

Substituting state-space matrices to the equation (8) we ob-
tain the transfer function H(z)

H(z) = a1 +(2−a1 −a2) · (z−1+a1 +a2)
−1 ·a1

H(z) =
a1 +a1z−1

1− z−1(1−a1 −a2)

The same result is obtained by reduction of the last column
and row in (12) as

1 2

N(2)
T = 2

[
−a1−a1z−1

−1+z−1(1−a1−a2)
−1

]
. (13)

The transfer function of the parallel adapter in Fig. 2 (a) is

H(z) =
a1 +a1z−1

1− z−1(1−a1 −a2)
. (14)

The transfer function of the parallel adapter is derived
also by means of a signal-flow graph reduction or by Ma-
son rules. In Fig. 3 there are loops-gains and transfer path
input/output of the parallel adapter Fig. 2 (b). Using Mason
rules (15) we get the transfer function (14)

H(z) =
P1 ·d1 +P2 ·d2

1− (S1 +S2 +S3)
. (15)
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Fig. 3. Signal flow graph and its loop-gains.

2.1 Example of Digital Filter Analysis
In this section we shall calculate the transfer function

of the circuit in Fig. 4. As the first step we shall calculate
signal-flow matrix N(7)

S of the circuit [9].
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Fig. 4. Filter with four shifting elements and two delay ele-
ments.

1 2 3 4 5 6 7

N(7)
S =

2
3
4
5
6
7



0 −1 0 0 0 0 1
0 0 −1 0 0 z−1 0
0 0 0 −1 z−1 0 0

2−2 0 0 0 −1 0 −2−2 −2−3

2−1 0 0 1 0 −1 2−3

2−2 0 1 0 0 0 −1


(16)

To obtain N(6) we must reduce the node 7, it means the last
column and the last rows. Reduction of the matrices can be
done by the relation

nn−1
i j =

nn
i jn

n
nn −nn

innn
n j

nn
nn

(17)

where i = 2,3, . . .n and j = 1,2,3, . . .n.

N(6) =


0.25 −1 1 0 0 0

0 0 −1 0 0 z−1

0 0 0 −1 z−1 0
0.15625 0 −0.375 0 −1 0
0.53125 0 0.125 1 0 −1


(18)

Similarly we obtain N(5) and N(4).

N(5) =


0.25 −1 1 0 0

0.53125z−1 0 −1+0.125z−1 z−1 0
0 0 0 −1 z−1

0.15625 0 −0.375 0 −1


(19)

The matrix N(4)
E is flow-state matrix. From the flow-state

matrix we can calculate state matrices A, B, C and scalar D,
(21).

N(4)
E =

 0.25 −1 1 0
0.53125z−1 0 −1+0.125z−1 z−1

0.15625z−1 0 −0.375z−1 −1


(20)

D = 0.25 C = [1 0]

B =

[
0.53125
0.15625

]
A =

[
0.125 1
−0.375 0

] (21)

Substituting state-space matrices into (8) we get (22) and the
transfer function (23)

H(z) = 0.25+

+[1 0]
(

z
[

1 0
0 1

]
−
[

0.125 1
−0.375 0

])−1

·
[

0.53125
0.15625

]
(22)

Calculating equation (22) the transfer function of the circuit
in Fig. 4 is

H(z) =
0.25+0.5z−1 +0.25z−2

1−0.125z−1 +0.375z−2 =

=
2−2 +2−1z−1 +2−2z−2

1−2−3z−1 +(2−2 +2−3)z−2 . (23)

3. Realization of the Circuit
This algorithm can be used also for realization of the

circuit from state-space matrices (21). Provided that the
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state-space matrices (21) are known we can write the state-
flow matrix N(4)

E (20). This state-flow matrix has four
columns and three rows. In this matrix we can expand one
row and column to obtain matrix N(5) with five columns
and four rows (19). To obtain the matrix N(5) with five
columns and four rows (19) from the matrix N(4)

E which con-
tains four columns and three rows, we must select elements
in the last column and row of the matrix N(5). For exam-
ple if we choose the element n(5)45 of the matrix N(5) z−1 and

n(5)51 = 2−2 − 2−2(2−2 + 2−3) = 0.15625 then n(5)(41)=0. If we

choose the element n(5)25 =0, then the first row of the matrix

N(5) and N(4)
E remains unchanged. In case of choosing the

element n(5)54 =0 of the matrix N(5) then the forth columns of

N(5) and N(4)
E remain unchanged. Similarly we can obtain

the matrix N(6) (18) and N(7)
S (16). Matrix N(7)

S is the sig-

nal flow matrix because all of the elements n(7)i j of the matrix

N(7)
S are simple expressions. From the signal flow matrix the

circuit can be sketched. Element n(7)36 = z−1 must be con-
nected in the circuit, Fig. 4, between the nodes 6 and 3. El-
ement n(7)67 = 2−3 = 0.125 must be connected in the circuit,
Fig. 4, between the nodes 7 and 6. Digital structure that cor-
responds to the signal-flow matrix N(7)

S is presented in Fig. 4.
Equation (24) can be used for the expansion of matrixes

nn
i j = nn−1

i j −nn
innn

n j = 0 (24)

where the elements of nn
in and nn

n j can be chosen. In the next
paragraph we shall demonstrate how the circuit is obtained
if the state space matrices are known.

4. Design of the Third Order Direct
Form State-Space Structure
In this example the procedure of circuit realization de-

scribed in Section 3 is explained. The following exam-
ple demonstrates the proposal of the third order State-Space
structure. State matrices of the third order State-Space filter
can be written in the form [10], [11]

D = d, C =
[

c1 c2 c3
]
,

B =

 b1
b2
b3

 , A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (25)

State-flow matrix (27) can be obtained by substitution (25)
in general State-flow matrix (26)

N(5)
E =

[
D −E C

z−1B 0 −E+Az−1

]
, (26)

N(5)
E =

=


d −1 c1 c2 c3

z−1b1 0 −1+a11z−1 a12z−1 a13z−1

z−1b2 0 a21z−1 −1+a22z−1 a23z−1

z−1b3 0 a31z−1 a32z−1 −1+a33z−1

 .
(27)

To expand the State-flow matrix (27) which contains five
columns and four rows in the matrix with six columns and
five rows (29), we use the equation (28) only in the case if
we choose nnn =−1,

nn
i j = nn−1

i j −nn
innn

n j. (28)

If we choose the elements of the new matrix n(6)26 = n(6)46 =

n(6)56 = 0, then the first, third and fourth rows in the new ma-
trix N(6) remain unchanged (29).

N(6)=

=



d −1 c1 c2 c3 0

n(6)31 n(6)32 n(6)33 n(6)34 n(6)35 n(6)36

z−1b2 0 a21z−1 −1+a22z−1 a23z−1 0

z−1b3 0 a31z−1 a32z−1 1−a33z−1 0

n(6)61 n(6)62 n(6)63 n(6)64 n(6)65 n(6)66


.

(29)

The elements of the matrix (29), n(6)61 , n(6)62 , n(6)63 ,

n(6)64 ,n
(6)
65 , n(6)66 and n(6)36 can be selected and the remaining ele-

ments n(6)31 , n(6)32 , n(6)33 , n(6)34 and n(6)35 can be obtained by means
of equation (28). If we choose

n(6)26 = 0, n(6)46 = 0, n(6)56 = 0, n(6)62 = 0,
n(6)66 =−1, n(6)65 = a13, n(6)64 = a12, n(6)63 = a11,

n(6)36 = z−1, n(6)61 = b1,

then the elements of the new matrix take the form

n(6)31 = n(5)31 −n(6)36 n(6)61 = z−1b1 − z−1b1 = 0,

n(6)32 = n(5)32 −n(6)36 n(6)62 = 0− z−10 = 0,

n(6)33 = n(5)33 −n(6)36 n(6)63 =−1+a11z−1 −a11z−1 =−1,

n(6)34 = n(5)34 −n(6)36 n(6)64 = z−1a12 − z−1a12 = 0,

n(6)35 = n(5)35 −n(6)36 n(6)65 = z−1a13 − z−1a13 = 0

and we obtain the matrix N(6)

N(6)=

=



d −1 c1 c2 c3 0

0 0 −1 0 0 z−1

z−1b2 0 a21z−1 −1+a22z−1 a23z−1 0

z−1b3 0 a31z−1 a32z−1 −1+a33z−1 0

b1 0 a11 a12 a13 −1


.

(30)
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Similarly, we can obtain the matrices N(7) and N(8). After
a very simple calculation, we can get the matrix (31) and
signal-flow matrix (32). For example it is advantageous to
choose the element n47 = z−1, in the matrix N(7), because
each element in row 3 of the matrix N(6) contains z−1. Pro-
vided that we choose the matrix element n71 equal to b2, the
element n41 is equal to zero, marked by (0). The same pro-
cedure can be applied to matrix N(7), equation (31), in order
to get equation (32):

N(7)=

=



d −1 c1 c2 c3 0 0

0 0 −1 0 0 z−1 0

(0) 0 0 −1 0 0 (z−1)

z−1b3 0 a31z−1 a32z−1 −1+a33z−1 0 0

b1 0 a11 a12 a13 −1 0

(b2) 0 a21 a22 a23 0 (−1)


,

(31)

N(8) =



d −1 c1 c2 c3 0 0 0
0 0 −1 0 0 z−1 0 0
0 0 0 −1 0 0 z−1 0
0 0 0 0 −1 0 0 z−1

b1 0 a11 a12 a13 −1 0 0
b2 0 a21 a22 a23 0 −1 0
b3 0 a31 a32 a33 0 0 −1


.

(32)

The digital structure that corresponds to the signal flow ma-
trix N(8) is presented in Fig. 5. From the State-Space filter
of the third order in Fig. 5 the general structure for the State-
Space filter of the arbitrary order can be derived.

Fig. 5. State-Space filter of the third order.

The equivalent digital structure in Fig. 6 can be ob-
tained from the State-Space filter in Fig. 5 by changing the
summator to node, the node to summator, the input port to
output port and changing directions of the multipliers.

Fig. 6. State-Space filter of the third order in second form.

Fig. 7. Direct realization of the State-Space Filter.

Analogously we can write from N(8) the matrix N(10) for the
State-Space digital filter of the fourth order (33). The digital
structure that corresponds to the signal flow matrix N(10) is
presented in Fig. 7,

N(10) =

=



d −1 c1 c2 c3 c4 0 0 0 0

0 0 −1 0 0 0 z−1 0 0 0

0 0 0 −1 0 0 0 z−1 0 0

0 0 0 0 −1 0 0 0 z−1 0

0 0 0 0 0 −1 0 0 0 z−1

b1 0 a11 a12 a13 a14 −1 0 0 0

b2 0 a21 a22 a23 a24 0 −1 0 0

b3 0 a31 a32 a33 a34 0 0 −1 0

b4 0 a41 a42 a43 a44 0 0 0 −1



.

(33)

5. Conclusion
The method proposed in this paper allows not only

analysis of digital networks but also construction of new
digital filters. Equivalent filters of differing structures can
be found according to various matrix expansions. However,
some of these structures can be sensitive to the error of quan-
tization. This matrix synthesis method of the digital struc-
tures seems to be laborious, but in fact it is very simple and
the effects are satisfactory when seen from the analysis of
the structures.
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