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Abstract. The contribution presents an application of 
a movement-related EEG temporal development classifica-
tion which improves the classification score of voluntary 
movements controlled by closely localized regions of the 
brain. A dynamic Hidden Markov Model-based (HMM) 
classifier specifically designed to capture EEG temporal 
behavior was used. Surprisingly, HMM classifiers are 
rarely used for BCI design despite of their advantages. 
Because of this we also experimented with Learning Vector 
Quantization, Perceptron, and Support Vector Machine 
classifiers using a feature space which captures the tempo-
ral dynamics of the data. The results presented in this work 
show that HMM achieves the best performance due to 
an a priori information on physiological behavior of EEG 
inserted to the HMM classifier. Feature extraction process 
and problems with classification were analyzed as well. 
Classification scores of 66.7% – 94.7% were achieved in 
our experiments. 
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1. Introduction 
Brain-Computer Interface (BCI) is a system that by-

passes traditional brain output pathways – peripheral 
nerves and muscles. Main target users are totally paralyzed 
patients which are “locked inside” without a way of com-
munication with the rest of the world. Typical diagnose is 
Spiral Cord Injury (SCI) or Amyotrophic Lateral Sclerosis 
(ALS). In this case BCI serves as supplementation of motor 
functions. BCIs based on motor activity can be also used 
for motor recovery of partially disabled subjects, such as 
those after stroke [1]. 

A great number of BCI prototypes already exist. 
However, all of them suffer from too slow communication 
channel between a human brain and a computer working 
with Information Transfer Rate (ITR) lower than 100 bits 
per minute. If we compare this with a standard keyboard 

computer interface reaching ITR of up to 1 kbit per minute 
we see that all these BCI devices are still not very suitable 
for real computer control. One possibility leading to higher 
ITR is the recognition of more distinct brain states – trans-
ferring more bits per state (hence high-resolution EEG 
recognition). However, the existing systems recognize only 
few very different EEG activities (left/right-hand or finger 
movement [2], [3], [4], [5], [6], [7], [8], mental activities 
[3], [9], [10], conscious EEG rhythm control [11], [12], or 
event-related potentials [13], [14], [15], among others). 

Our research is targeted at the exploration of possi-
bilities of the high-resolution movement recognition from 
an EEG signal focusing on utilization of temporal devel-
opment. The aim of this paper is to investigate if voluntary 
movements controlled by closely localized regions of brain 
can be classified with a sufficient score to bring a future 
increase of the ITR by extending the number of classifieds 
states (movement types). 

To achieve this goal we evaluate the possibility of 
two different movement types of the same finger (therefore 
high-resolution) classification at first. Movement-related 
EEG was selected because it is natural to control BCI with 
it as we commonly control our surroundings by conscious 
movements and because it is also possible to use it for 
rehabilitation [1], [16].  

Further, it is known that only imagination of a move-
ment is sufficient [17], [18] to produce the desired brain 
activity pattern (albeit weaker and more localized on scalp 
[19]) even when no feedback is present and that the brain 
patterns are reinforced when correct feedback is present 
which can further improve the performance [1]. Other 
advantages of the movement-related activity BCI paradigm 
are: the need for only a minimal initial training with 
a subject, a fully endogenous BCI system, and a high 
number of available potentially identifiable states 
(movement types).  

Our previous work [20] showed that off-line single 
trial classification of extension and flexion movements of 
right index finger is possible using Hidden Markov Models 
(HMMs) classifier. The HMM classifier was specifically 
designed (see section 4.3) to capture movement-related 
EEG temporal dynamics which was not done in works [5], 
[6], [8]. 
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EEG temporal dynamics is not widely used in BCI 
research, instead differences of signal power from different 
electrodes (extracted by means of appropriately defined 
spatial filters [21], [7]) are used by systems recognizing left 
and right hand movements [22], feet and tongue move-
ments [23], or mental activities [10]. Classification of 
left/right-hand movements or mental activities usually 
addressed in BCI papers are easier tasks than classification 
of movements controlled by closely localized brain centers 
since the EEG power difference between left and right 
brain hemispheres can be used to obtain high classification 
scores. The typically used mental activities (geometric 
figure rotation, composition of a letter to a friend, visual 
counting and math problems) were specifically designed to 
invoke hemispheric brainwave asymmetry [10]. 

Experiments with movements controlled by closely 
localized brain centers (like finger movements) are rare – 
for example [24] uses imaginary closing and opening of the 
right hand but presents only movement detection scores. 
There is no other work known to us discriminating exten-
sion or flexion movements of the same finger. Classifica-
tion of finger movements has been attempted so far only 
using invasive data acquisition methods [25]. Recent work 
with similar movement resolution [26] deals with exten-
sion, flexion, pronation and supination of right wrist. Inter-
estingly, the best two-class classification score of 80% over 
all subjects was achieved with discrimination between 
extension and flexion movement. However, this work 
relies heavily on spatial distribution as 64 electrodes are 
used with Independent Component Analysis (ICA). 

Further, the temporal dynamics approach enables to 
base the classification even on a single electrode source. 
Single electrode source based BCIs are usually designed 
for activity detection [24] rather than classification of dif-
ferent activities – for example work [18] uses a single 
source approach to detect repetitive wrist extension of right 
hand. Single electrode source was also used for discrimi-
nation of slow and fast extensions and rotations of right 
wrist work [27]. The work has shown that extension and 
rotation movements can be classified but provide classifi-
cation score only between slow and fast movements. In 
addition, using EEG temporal context can also increase 
sensitivity to specific EEG types and facilitate extension of 
the system to more types of movement-related EEG in the 
future, therefore resulting in a high-resolution recognition. 

The aim of this paper is to show that the temporal 
dimension alone can be used to classify closely localized 
movements and therefore it can improve resolution of 
existing movement-related BCIs when used in conjunction 
with the typical spatial approach as the temporal dynamics 
and spatial filtering are not mutually exclusive and can be 
combined. Our previous works presented the basic HMM 
architecture used to classify movements but did not show 
that temporal development is necessary to reach high clas-
sification score. Thus, this paper presents an exhaustive 
study of classification performance depending on the used 
classification algorithm and parameterization which is 

a significant step beyond our preliminary results published 
in [28]. Apart from HMM, also Perceptron, Support Vector 
Machine (SVM), and Learning Vector Quantization (LVQ) 
were used as referential classification paradigms. In con-
trast to other studies we used all these classifiers with 
a feature space extended to capture temporal dynamics of 
movement-related EEG. We performed a detailed analysis 
of our results to be sure that the classification system really 
recognizes movement-related EEG and not e.g. EMG 
soaking into the used EEG. 

This contribution is organized as follows: first, the 
properties of the used EEG database are given, and then the 
general properties of movement-related EEG are explained. 
The next section describes the methods used and classifi-
cation systems architecture. The fifth section presents the 
achieved results and the sixth discusses problems with the 
classification and validity of the results. Finally, several 
conclusions and possible future steps are drawn. 

2. Used EEG Database 
The EEG database recorded in study [29] was used. 

Eleven subjects took part in the experiment; each of them 
performed brisk extension (extension followed by a return 
to the resting position) and flexion (flexion followed by 
a return to the resting position) movements of the right 
index finger, see Tab. 1 for total numbers of recorded 
epochs. Spacing between movements was 10 – 12 s, 
experimental subjects kept their eyes closed during the 
experiment. The EEG was recorded at a sample rate of 
256 Hz by 21 AgCl electrodes placed over the left 
sensorimotor area with higher spatial resolution than the 
standard 10-10 system, see Fig. 8. All artifacts visible in 
the EEG signal (EOG, muscle, etc.) were localized 
manually and afflicted epochs were discarded. The EEG 
signal was filtered by a Laplacian filter with 4 neighbors 
mask and segmented into 10 s long epochs centered at the 
movement time. For more details on the experiment and 
EEG preprocessing see [29].  
 

Subject n. 1 3 4 5 6 7 8 9 10 11 
N. of extension 73 41 72 99 62 74 87 44 64 84 
N. of flexion 81 77 38 81 66 82 63 41 74 52 

Tab. 1. Total numbers of recorded epochs. 

3. General Properties of the 
Movement-Related EEG 
Volitional movements have specific responses in EEG 

[30]; a distinctive temporal behavior of an EEG short time 
spectrum can be seen, see Fig. 1: 

 μ rhythm event-related desynchronization (μERD): 
the μ-rhythm is defined as an 8 – 12 Hz rhythm 
attenuated before and during the voluntary movement 
[30] recorded over the sensorimotor cortex. μERD 
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starts usually about 1 s prior to the movement onset 
[31], it is usually localized to the C3/CP3 and C4/CP4 
scalp area [32] and exhibits a contralateral preponder-
ance depending on the subject’s handedness and the 
movement speed [32]. It is observed bilaterally. 
μERD allows differentiating not only the side of the 
body performing the movement, but slow and fast 
movements as well, and depends on the force exert by 
the movement [33]. The desynchronization accompa-
nies even the mere motor imagery and is present in 
most normal adults’ EEG [34]. Majority of papers 
dealing with left/right hand movement recognition 
utilize described preponderance of μERD contra-
lateral to the performed movement. 

 β rhythm event-related synchronization (βERS): cen-
tral rhythms display desynchronization prior and 
during the movement and a rebound in the form of 
a phasic synchronization after the movement [17], 
[29]. βERS is located about 1 s after the movement 
onset, see Fig. 1. ERS is larger over the contralateral 
hemisphere and focused slightly anterior to the focus 
of the largest μERD [29]. Both μ and central β 
rhythms are products of the idling sensorimotor cor-
tex, μ rhythm is generated in the somatosensory area, 
β rhythm in the motor area [35]. The amplitude and 
focus of the βERS also allows distinguishing between 
types of movements [29], the amplitude is greater and 
focus larger in finger extension-flexion compared to 
flexion-extension movement. 

 μ rhythm event-related synchronization and β rhythm 
event-related desynchronization can be also observed 
in Fig. 1. but their contribution to the movement clas-
sification is not significant in this case. 

The described behavior of movement-related EEG is 
further utilized by our HMM-based classification system, 
see Fig. 1 and description of the classifier below. 

4. Methods 

4.1 EEG Modeling 

The used EEG database was originally recorded for a 
physiological research. From our point of view it has one 
significant drawback: there is no continuous non-move-
ment-related (resting) EEG recording of sufficient length in 
the database, and thus we were unable to evaluate false 
movement detection ratio. We decided to generate an arti-
ficial resting EEG signal by AR modeling [36], [37] to at 
least partially overcome this limitation. The 8th order AR 
model parameters were estimated from short segments (3 s 
located -4.5 to -1.5 s prior to the movement onset) of the 
resting EEG preceding each movement present in the data-
base. Since our interest was to model a typical resting EEG 
signal for a given subject and electrode we computed one 
model for each subject and each electrode. The model 
coefficients were obtained from autocorrelation function 

averaged across all the appropriate realizations of EEG. 
The modeled signal was obtained by filtering white noise 
with the modeling filter and scaling to the average power 
of the training data. For each subject, the numbers of 
extension and flexion realizations were averaged and the 
same numbers of 10 second long resting EEG realizations 
were generated [37] and imported into the database. We 
used the classification score time courses (see section 5.2) 
to show that the resting EEG was generated correctly with 
respect to the used feature extraction methods. If there 
were any undesired differences between the modeled and 
real EEG they would be visible in Figs. 3b, 4b, or 5b, as 
flat classification time course, see section 6.1. Currently, 
we have been recording a new EEG database under less 
controlled conditions including also resting EEG and the 
first classification experiments gave results very similar to 
the ones presented below justifying the correctness of the 
used modeling approach [38]. 

4.2 Feature Extraction 

The feature vectors for classification were computed 
from 1 s long rectangular window sliding with a step of 
183 ms. The following features were tested: 

 Discrete Time Fourier Transform (DTFT): frequency 
band 6 – 40 Hz was used for classification since the 
movement-related changes in EEG can be found in 
this band. The frequency resolution of FFT was of 
1 Hz and the dimension of the feature vector was thus 
35. FFT algorithm was used. 

 Autoregressive Model (AR) coefficients: AR model of 
the 8th order [37] was used to capture the 1 – 43 Hz 
band. This was achieved by decimating the signal 
three times prior to the modeling to cover only the 
frequency band where the EEG changes accompany-
ing movement can be found. Autocorrelation method 
was used for extracting the AR features. 

 Cepstrum: 8 coefficients of real cepstrum were com-
puted from the AR model coefficients (LPC cep-
strum). This method was selected as it is less sensitive 
to noise than DFT cepstrum and coefficients are less 
mutually correlated [39]. It is possible to separate 
periodic and non-periodic components of the original 
signal using cepstral coefficients. This can be of use 
with EEG processing as movement-related EEG can 
be viewed as rhythmic μ-rhythm passing through 
additional attenuating or amplifying filtering to get 
the ERD/ERS described above. 

 Reflection coefficients: 8 reflection coefficients were 
derived from the AR models using Levinson-Durbin 
recursion [40]. Reflection coefficients have physical 
interpretation as intensities of reflected waves’ propa-
gation through medium. The same reasoning as for 
cepstral coefficients can be also applied here. 

The similarity of a signal power spectrum and the 
Euclidean distance in the feature space is less correlated 
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with the AR coefficients. Therefore we say that the AR 
coefficients do not constitute Euclidean Distance Feature 
Space (EDFS) as the remaining features. Due to this, the 
relation between AR coefficients and the signal power 
spectra is nonlinear; this can result in lower performance 
when a classifier utilizing the Euclidean distance function 
is used. Since our classifier relies on the temporal devel-
opment of the EEG signal described above we also ex-
perimented with features extended with the approximation 
of their first derivative (Δ) parameters. The derivative was 
computed from several time frames by polynomial ap-
proximation used in speech processing [41] to reduce its 
sensitivity to noise. 

4.3 Classifiers Used 

Our previous very preliminary results [28] showed 
that HMMs are able to utilize the underlying temporal 
development in the movement-related EEG signals to clas-
sify movements controlled by closely localized brain cen-
ters. Classification system based on HMM [42] was reused 
from our previous work [20]. Hidden Markov Models are 
dynamic and generative classifiers widely used in speech 
recognition. HMMs are designed for classifying time series 
[42] and capable of modeling sudden changes in the 
dynamics of the data which is frequently observed in 
physiological data. Despite of this, HMMs are rarely used 
with biomedical data such as ECG, respiration rate, and 
EEG [43]. 

The architecture of the used HMMs is designed to 
capture the temporal development of movement-related 
EEG. The used models have the left-to-right, no skips 
architecture with four emitting states modeling the four 
significant phases of movement-related EEG, see Fig. 1 
and the description of the EEG properties above. The 
second emitting state of the model is usually trained to the 
movement-related μERD, and the third emitting state to 
μERS or βERS depending on the individual response of 
a given experimental subject, see Fig. 1. The first and last 
emitting state model the resting states before and after the 
movement (called “silence” in Fig. 1 to avoid confusion 
with the real resting type of EEG). No skips are introduced 
into the model structure as we do not expect that any of the 
movement-related phases can be omitted (based on results 
presented in [29], [31] and other works); simple left-to-
right architecture is used as phases follow each other in the 
described sequence. The emitting states emit a vector of the 
same dimensionality as the input feature vector, single 
Gaussian mixture models with diagonal covariance matrix 
are used for definition of the output probability distribution 
function. Hidden Markov Toolkit [41] was used to imple-
ment the HMM classifier. 

The described approach has several advantages [44]: 
utilization of the context information: the system uses the 
temporary context of the EEG to improve the classification 
score; physiological compatibility: the selected model ar 

chitecture matches the underlying physiological process 
and it is even possible to segment the EEG with the help of 
the HMM classifier (on the base of the trained transition 
matrices) [45], [46]; ease of the interpretation: it is quite 
simple to interpret the contents of the trained model. This 
is a great advantage compared to e.g. some kinds of neural 
networks where the implementation of the trained system is 
not so straightforward; and, finally, ability to model the 
EEG: we are able to generate synthetic realizations of the 
EEG for tests of various algorithms. None of these advan-
tages can be reached with neural network-based classifiers. 
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Fig. 1. Model architecture along with the EEG short time 

spectrum temporal development; subject 4, right index 
finger extension, electrode 6. 

Compared to other works using HMM for EEG clas-
sification ([5], [6], [47] among others) we designed the 
HMM architecture with respect to the temporal develop-
ment of movement-related EEG. The movement-related 
EEG signal is thus not recognized based on μERD spatial 
scalp distribution but on its temporal context using only 
one signal source – based on differences between μERD 
and βERS parameters between both types of movements. 
Model architecture designed according to EEG behavior is 
actually an insertion of a priori information on the EEG 
behavior to the classification system. Further, always only 
one signal source – electrode – is used to classify the type 
of movement. However, neural network-based classifiers 
are very frequently used by BCI systems [48]. To see 
whether the whole HMM framework brings an advantage 
we also dealt with LVQ, Support Vector Machine (SVM), 
and Perceptron extended to capture the temporal dynamic 
of the EEG signal by feature vector concatenation (similar 
to the Time Delayed Neural Network (TDNN) approach). 
Signal features from 1, 3, and 5 segments were concate-
nated together with segment step of 366 ms (i.e. each sec-
ond segment was skipped) giving sequences of features 
covering 1, 1.74, and 2.47 seconds, see Fig. 2 for an 
example. 



670 J. DOLEŽAL, J. ŠŤASTNÝ, P. SOVKA, EXPLOITING TEMPORAL CONTEXT IN HIGH-RESOLUTION MOVEMENT-RELATED EEG … 

F

F

F

1 sec

TDNN extension
concatenated feature
vector

Feature computation

Time [sec]
0 sec

183 ms

 
Fig. 2. TDNN-like segmentation and feature extraction 

process. 

No concatenation of features was needed to be per-
formed with the HMM classifier, as it supports classifica-
tion of time series natively. The Perceptron, SVM, and 
LVQ classifiers were trained at the time intervals 
<+0.14 s; +1.14 s>, <-0.22 s; +1.51 s>, and <-0.59 s; 
+1.87 s> relative to the movement offset for sequence 
lengths of feature vector 1, 3, and 5 segments respectively. 
The chosen training time intervals contain both ERD and 
ERS, since the maximum ERD power decrease is usually 
from 0 to 0.1 s after the movement time [31], and the maxi-
mum of ERS power increase is usually from 1 to 1.5 s after 
the movement time (hence 1, 3, and 5 frames for TDNN-
like extension), see Fig. 2. The detailed descriptions of 
application of the chosen neural networks classifiers 
follow: 

 Perceptron – as the simplest available classifier – was 
intentionally used to see if it could be used for fast 
and reliable movement detection (movement-resting 
two-class classification). 

 SVM is considered to be the most suitable classifier 
[48] in the field of BCI. SVM has good generalization 
properties and low sensitivity to overtraining for 
features with high dimensionality [49]. SVM is also 
partially resistive to the curse of dimensionality and is 
a stable classifier. Radial Basis kernel Function (RBF 
SVM) was used in our study as this kernel is gener-
ally used in BCI research with good results [48], [50]. 
Sequential Minimal Optimizer (SMO) learning algo-
rithm was applied because it is conceptually simple, 
generally faster, and has better scaling properties for 
difficult SVM problems than the standard SVM 
training algorithm [51]. 

 LVQ network is commonly used for classification of 
movements on the opposite side of the body [52] or 
their detection [53]. LVQ network defines the 
boundaries between classes based on prototypes 
representing output classes, the nearest neighbor para-
digm and winner takes all strategy [54]. LVQ is also 
partially resistive to the curse of dimensionality. The 
amounts of data per classes were balanced in order to 
obtain unbiased results. 

As Perceptron does not natively support three-class 
classification (flexion, extension, and resting) and both 
SVM and LVQ did not give sufficiently good and valid 
classification results with three classes we present detailed 
results of three-class classification only for HMMs and 
only two-class classification results (extension/flexion – 

movement classification and extension/resting – movement 
detection) for the remaining classifiers. Movement classifi-
cation and movement detection results are also present with 
HMM to have referential results. A complete framework 
for EEG processing implemented in Matlab, C++, and 
Linux command line shell was built. The following parts 
make up the core of the system: 

1. Feature extraction was written in Matlab; for EEG 
raw format reading we used function dread from 
toolbox [55]. The input to this block is the raw EEG. 
The output is parameterized feature vector. 

2. Randomization procedure is responsible for the miti-
gation of the effect of the small training and testing 
set – to combat the curse of dimensionality. The 
amount of data needed to describe the class increases 
exponentially with the dimensionality of the feature 
vectors [56]. However, the training set is usually very 
small because of demanding and time consuming 
EEG recording. Holdout with stratification [57] was 
used to get reliable results independent on the training 
and testing EEG realizations [45], [20]. Each classifi-
cation was run 16 times with different (and random) 
division of EEG realizations between the disjunctive 
training (50% of realizations) and testing (50% of 
realizations) sets. 

3. Classification module using the HMM, SVM, LVQ, 
and Perceptron. 

4. Evaluation module collected the 16 results of inde-
pendent runs and computed averages and standard 
deviations of the classification scores. Only those 
aggregated numbers were used for the comparison. 

Testing of the classification performance was per-
formed using the moving segment method to detect possi-
ble false positive classification results (see section 6.1) 
because a reliable classifier must reach the best classifica-
tion score using the EEG segments close to the time of the 
real movement. 

5. Results 

5.1 Hidden Markov Models 

HMMs successfully classify movement types and also 
give the best results for movement detection. Results of the 
three-class classification are shown in Tab. 2. The left half 
of the table contains the classification scores computed as 
an average from extension, flexion, and resting classifica-
tion for the given subject and parameterization. The best 
score is in boldface; the right half of the table contains 
detailed scores for extension, flexion, and resting type of 
movement for the best result along with the best electrode. 
The classification with reflection coefficients gave the 
same results as the classification with cepstral coefficients; 
thus the appropriate column was removed from the table 
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for the sake of space. Results reached with AR+Δ, CEP+Δ, 
K, and K+Δ parameters are also not presented as using 
these features did not improve classification score at all. 
 

S. FFT F+Δ AR CEP Extension  Flexion Resting E.
1 78.6 77.6 61.2 70.0 66.5±14.5 69.1±16.2 100.0±00.0 10
3 85.5 86.2 65.3 80.4 82.0±07.4 77.5±05.3   99.0±02.5 6 
4 96.6 95.6 84.7 90.4 92.5±06.0 97.2±02.3 100.0±00.0 10
5 86.1 85.1 79.8 89.6 81.2±15.3 77.1±08.7 100.0±00.0 10
6 87.6 87.5 74.1 80.7 74.9±09.2 88.0±08.3 100.0±00.0 17
7 84.6 85.2 65.3 79.8 67.6±03.4 88.0±04.9 100.0±00.0 17
8 97.2 97.4 58.7 84.0 93.7±03.6 100.0±00.0   98.5±03.0 12
9 85.6 85.8 63.4 76.4 77.5±13.9 79.9±07.8 100.0±00.0 15

10 89.1 87.2 66.3 77.0 94.2±05.7 77.2±12.5   95.9±02.8 5 
11 94.4 92.2 64.6 92.4 90.7±10.6 97.3±02.5   95.4±03.7 5 

Tab. 2. Three-class classification results, HMM classifier with 
all the parameterizations. 

 

S. FFT FFT+Δ AR CEP Extension Flexion  E.
  1 62.8 62.5 52.6 55.7 69.2±13.6 56.4±15.7 12
  3 74.7 75.0 79.7 85.7 84.4±06.4 87.0±05.2 16
  4 92.6 92.4 87.0 92.0 94.3±05.2 90.9±06.1 17
  5 81.2 81.7 80.8 84.7 78.9±08.7 90.4±08.6 10
  6 81.7 81.2 63.4 70.5 86.0±08.8 77.4±09.2 17
  7 77.4 77.6 69.1 79.2 92.3±04.3 62.9±08.4   6
  8 98.5 97.4 76.9 87.3  100.0±00.0 97.1±02.5 10
  9 71.1 71.2 71.4 71.3 72.4±11.2 70.5±10.7   6
10 81.3 80.0 71.0 74.8 81.5±14.3 81.1±18.4 11
11 93.6 92.7 77.4 93.1 97.5±03.2 89.7±08.6 6 

Tab. 3. Movement classification results, HMM Classifier with 
all the parameterizations. 

Results of the two-class classification experiments: 
movement classification and movement detection are 
shown in Tabs. 3 and 4. The features giving the best 
classification results with HMM classifier are mostly FFT 
or FFT+Δ; the worst results were achieved with AR 
coefficients. 
 

S. FFT FFT+Δ AR CEP Extension Resting  E.
  1 99.8 99.8 95.1  99.5  99.6±01.0 100.0±0.00 10
  3 100.0 100.0 89.2  97.1 100.0±0.00 100.0±0.00 6
  4 100.0 100.0 98.9 100.0 100.0±0.00 100.0±0.00  5
  5 100.0 100.0 88.6  97.7 100.0±0.00 100.0±0.00 10
  6 100.0 100.0 99.4  95.3 100.0±0.00 100.0±0.00   5
  7 100.0 100.0 87.6  96.7 100.0±0.00 100.0±0.00   5
  8 100.0 100.0 86.8  99.0 100.0±0.00 100.0±0.00 10
  9 100.0 100.0 82.4  90.8 100.0±0.00 100.0±0.00   7
10 99.3 99.1 80.6  92.5   99.0±01.9   99.6±01.0 17
11 99.8 99.8 82.7  97.1 100.0±00.0   99.6±01.0   6

Tab. 4. Movement detection results, HMM classifier with all 
the parameterizations. 

5.2 Perceptron, Support Vector Machine, and 
Learning Vector Quantization 

The results achieved by the Perceptron, SVM, and 
LVQ classifiers are presented in Tabs. 5 and 6. The left 
half of Tab. 5 contains the classification scores computed 
as an average from extension and flexion classification for 
the given subject and classification system. The best score 
is in boldface; the right part of the table contains the best 
scores with confidence intervals, parameterization, number 

of concatenated feature vectors, movement time offset 
interval, and electrode at which the best score was reached. 
Only the results for the number of concatenated feature 
vectors and parameterization resulting in the highest classi-
fication score are shown for the sake of space. C is the 
number of concatenated feature vectors, PAR is the param-
eterization. As we classified data obtained from a sliding 
window, we added the time interval in which the best clas-
sification score was reached. 
 

S. PCT SVM LVQ PAR C Extension/Flexion Time offset E.
  1 72.8 63.4 62.0 FFT+Δ 3 71.3±10.4/74.1±07.2 -0.41–+1.33 11
  3 68.3 71.8 74.1 CEP/K 3 69.8±08.8/78.5±05.1 -0.78–+0.95 16
  4 82.7 88.9 77.6 FFT+Δ 5 96.3±04.9/81.3±07.9 -0.22–+2.25 12
  5 69.7 77.2 73.4 FFT+Δ 5 70.3±04.5/84.1±04.0 -0.41–+2.06 11
  6 63.2 66.3 59.0 CEP 1 63.9±11.7/68.5±10.3  0.14–+1.14 11
  7 72.3 75.8 74.2 FFT 5 80.0±10.5/72.0±12.1  1.06–+3.53   6
  8 68.3 72.9 83.9 FFT 5 87.7±06.1/80.1±04.8 -1.33–+1.14   6
  9 64.2 69.7 61.4 K 5 73.8±10.0/65.2±13.0 -1.33–+1.14   6
10 74.5 77.8 71.2 FFT 5 78.4±10.2/77.4±07.4 -0.59–+1.88 11
11 76.5 78.8 76.9 K 5 82.6±05.2/70.8±09.8 -0.59–+1.88   6

Tab. 5. SVM, PCT and LVQ movement classification results. 

The fact that it contains the time of the movement in 8 
of 10 subjects and near post-movement interval indicates 
that the classification is based on movement-related EEG 
and not on any other unwanted artifactual features. Finally, 
in all but only three cases, using five frames for classifica-
tion gave the best results showing the need for the temporal 
dynamics of the movement-related EEG signal to get better 
classification results. The features giving the best classifi-
cation results are again the FFT or FFT+Δ (11 out of 20 
experiments). AR and AR+Δ never achieved the best re-
sults, which underlines the importance of the existing 
EDFS for the classification. 
 

S. PCT SVM LVQ PAR C Extension/Resting Time offset E.
  1 84.2 85.4 80.2 CEP 5 82.0±06.4/88.6±05.8 -0.59–+1.88   7
  3 96.1 96.0 89.5 CEP 5 95.4±05.9/96.6±03.7 -0.59–+1.88 16
  4 95.2 96.8 89.8 FFT+Δ 5 95.0±05.4/99.1±01.7 -0.41–+2.06 16
  5 97.3 97.4 96.2 CEP 5 95.8±02.6/99.0±01.6 -0.41–+2.06 11
  6 94.2 95.7 88.5 FFT 5 94.3±05.0/96.6±03.5 -0.41–+2.06   6
  7 95.8 97.3 88.7 FFT+Δ 5 95.5±02.8/99.0±01.6 -0.59–+1.88 10
  8 99.0 100.0 98.7 CEP 5 100.0±0.00/100±0.00 -0.59–+1.88 10
  9 84.4 93.4 83.3 FFT+Δ 5 94.3±05.0/92.5±09.8 -0.78–+1.69   6
10 95.7 96.1 95.2 FFT+Δ 5 95.8±03.2/96.5±02.7 -0.78–+1.69 10
11 94.3 95.2 88.1 CEP 5 97.4±02.5/92.6±04.3 -0.59–+1.88  6

Tab. 6. SVM, PCT and LVQ movement detection results. 

The time developments of the best score achieved by 
Perceptron are shown in Fig. 3. We can see a rise of the 
classification score at/after the time of the movement 
(marked by a black vertical line).   The classification score 
reached by the SVM is higher compared to the results ob-
tained by the Perceptron classifier thanks to more complex 
SVM architecture, see Tabs. 5 and 6. 

Examples of the classification score time develop-
ment of the SVM are shown in Fig. 4. Note that the partial 
classification between extension and flexion movement can 
be seen, although the achieved score is lower and less 
stable than with movement detection. 
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                                a) 

 

 

                               b) 

Fig. 3. Perceptron classification score with 95% confidence 
intervals a) movement classification, subject 4, 
electrode 12, FFT features; b) movement detection, 
subject 8, electrode 15, cepstral features. 

   

                                a) 

  

                                b) 

Fig. 4. SVM classification score with 95% confidence 
intervals a) movement classification, subject 10, 
electrode 10, FFT+Δ features; b) movement detection, 
subject 11, electrode 6, cepstral features. 

  

                                a) 

  

                                b) 

Fig. 5. LVQ classification score with 95% confidence 
intervals a) movement classification, subject 8, 
electrode 6, FFT features; b) movement detection, 
subject 7, electrode 11, cepstral features. 

  

                                a) 

  

                                b) 

Fig. 6. Movement detection classification score with 95% 
confidence intervals. Comparison of cepstral (solid 
line) and AR (dashed line) features; subject 6, 
electrode 6, a) LVQ classifier b) Perceptron classifier. 

Examples of the classification score time develop-
ment for the LVQ network are shown in Fig. 5. Note that 
the LVQ movement classification gives more stable results 
than the Perceptron and SVM classifiers. 

The EDFS is crucial for LVQ – the classification 
based on AR coefficient gives worse results than with the 
Perceptron and SVM classifiers because the AR coeffi-
cients does not constitute an EDFS. Perceptron and SVM 
are less afflicted, compare Figs. 6a and 6b. 

6. Validation of Results 
Validation of results is mandatory when we work 

with noisy and non-stationary biomedical signals. We 
analyzed placement of the electrodes achieving the best 
score and we did visual inspection of the classification 
scores and short-time spectra temporal developments. 

6.1 Problems with Classification 

We encountered few cases of false positive classifi-
cation results when the classifier gave correct classification 
results due to systematical artifactual differences (SAD) in 
the recorded data. SADs likely came from the block re-
cording – all the extension movements were recorded in 
one block and flexion movements in another block, see 
[31]. 
  

                                a) 
  

                                b) 

Fig. 7. SVM, FFT features a) false positive - movement 
classification, subject 9, electrode 5, removed from 
experiments, b) positive movement detection 
classification, subject 5, electrode 11. 

This complicated interpretation of the results. First, it 
was necessary to make sure that the feature extraction had 
been set up properly to capture only the movement-related 
EEG and not any undesired differences (e.g. technical 
artifacts). Second, we had to carefully examine all our 
results and related EEG for the presence of classification 
artifacts. Based on our findings, we completely removed 
subject 2 (we detected an artificial 30 Hz rhythm in all the 
extension movement epochs independent on the move-
ment) and electrodes 5 and 10 of subject 9 from our analy-
sis, see Fig. 7a. 

However, a small portion of the false positive classi-
fication results from the block recording remained as can 
be seen in Figs. 3a, 4a, and 5a. These were assessed by the 
score gain – the difference of the maximal classification 
score reached close to the time of the movement and the 
classification score in the resting period 5 – 4 s before the 
movement onset which clearly indicates whether the classi-
fier reacts to the movement. All the temporal developments 
of classification scores were manually inspected and only 
the true positive results (showing the significant classifica-
tion score gain) were taken into account. We shall empha-
size here that these SADs were of static character and do 
not have any impact on results presented in [31]. On the 
contrary, the classification results of the artificial non-
movement data were frequently seemingly false positive as 
the resting class can be classified successfully, regardless 
of the movement offset (it is stationary in the whole 10 s 
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period), e.g. giving working classification (100% score) for 
the resting class and random classification (50% score) for 
the movement class anywhere in the time period of 5 – 4 
seconds before the movement onset. Since the classifica-
tion score is computed as weighted average of the scores 
for the two classes, in case of movement detection the 
classification score baseline can be of up to 75%, see Fig. 
7b for an example of positive movement detection classifi-
cation result. The movement is detected as we can see the 
score gain around the movement time. 

6.2 Localization of the Electrodes 

Based on the electrode locations, we can deduce 
which EEG movement-related phenomenon was used for 
the classification. As both movements are controlled 
primarily by the contralateral sensorimotor cortex, the most 
suitable electrodes should be those overlying the contralat-
eral sensorimotor hand area (electrode C3 and its sur-
roundings) [29]. The ERD shows significant differences 
between the two types of the movements in both pre-
movement and post-movement periods [31] at electrodes 
10 (C3) and 11 where also maximum of μERD is located. 
According to work [29] the maximum of ERS is located at 
electrodes 5 and 6. Indeed, electrode 6 was the most fre-
quently used and electrode 10 was the second most 
frequently used over all experiments. See Fig. 8 for 
electrode placement used in our experiments. 

 
Fig. 8. Electrode placement on scalp. Gray circles indicate the 

9 source derivations analyzed in our study. 
Approximate position of the central sulcus separating 
the primary motor cortex from the primary 
somatosensory cortex is marked by a gray line. 

The locations of the electrode giving the best classifi-
cation score for three-class classification as well as move-
ment classification (electrode 10 – C3 – for 5 experiments) 
shows that the HMM classification system mostly utilizes 
μERD to distinguish between both types of movements and 
resting EEG, see Tabs. 2 and 3. Furthermore, the electrodes 
giving the best classification scores for movement classifi-
cation with referential classifiers are the electrode 11 (4 
times out of 20 experiments) where ERD is most likely 
found [31] and electrode 6 (4 times where ERS is most 
likely found [29]. 

However, the results are slightly different when we 
perform movement detection, see Tabs. 4 and 6. The loca-
tions of the best electrodes are more evenly spread across 
all the nine locations used for classification. This can be 
explained by the bigger differences between resting and 
movement-related EEG compared to two movement-re-
lated EEG classes. The classification results varied across 
the electrodes used for classification and experimental 
subjects. Manifestation of movement-related activity is 
highly individual so the electrode giving the best classifi-
cation has to be individually found. For example, with 
subject 11 where the movement-related activity is very 
localized the best score was always reached around elec-
trode 6 where ERS is located, see Fig. 9. 
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Fig. 9. Extension movement-related activity for all the 

electrodes of subject 11. All the classifiers utilized 
ERS localized around electrode 6. 

The centroid of the electrodes giving the best classifi-
cation scores over all experiments is located 5.35 cm left of 
Cz and 0.5 cm frontally of the Cz electrode. The positions 
of the electrodes achieving the best classification scores as 
well as the localization of time windows with TDNN-ex-
tended neural networks are in correspondence with the 
results published in physiological studies summarized in 
section 3. This proves that the classifiers use movement-
related EEG for classification and not e.g. EMG soaking 
into recorded EEG signal. 

7. Comparison of Results 
The HMM achieved the best results, see Tab. 7.  

 

Classifier Ext/Flex/Rest Ext/Flex Ext/Rest 
HMM 88.7 ± 5.84 83.0 ± 10.7 99.9 ± 00.2 

Perceptron Not applicable 71.2 ± 11.6 93.6 ± 05.3 
SVM 51.7 ± 14.2 74.3 ± 08.9 95.4 ± 03.4 
LVQ 61.4 ± 11.6  71.3 ± 08.8 90.3 ± 03.7 

Tab. 7. Grand averages of the best classification scores in 
percents reached by our experiments. 

We surmise this is due to the usage of longer epochs 
and even more dynamic approach than our TDNN-like 
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extension – consider 2 classes with same mean duration but 
different standard deviations: HMMs include this deviation 
into the likelihood of the class. On the other hand, dis-
criminative classifiers do not take this directly into account 
[48]. The results reached by static classifiers are compara-
ble, Perceptron achieved the least stable results. 

As the best signal features for the next experiments 
with HMM, the FFT (22 times out of 30 experiments) and 
FFT+Δ (5 times) were chosen (see Tabs. 2, 3 and 4). The 
FFT and FFT+Δ features were also the best features with 
TDNN-extended static classifiers and movement classifi-
cation task; they have achieved the best score with 6 out of 
10 experimental subjects (see Tab. 5). For movement 
detection task, (see Tab. 6) the cepstral coefficients per-
formed the best (5 times) followed by FFT+Δ (4 times) and 
FFT (1 times). In this case the superiority of cepstral coef-
ficients can be attributed to the separation of periodical and 
aperiodical signal components. The AR coefficients were 
not proven useful; clearly the features constituting the 
EDFS are better for classification. This is crucial for the 
LVQ classifier; Perceptron and SVM were less afflicted by 
missing EDFS (see Fig. 6).  

The TDNN-like extension capturing temporal dy-
namics helped to reach higher classification score. The best 
score was achieved only 1 time without the extension (see 
Col. 5 in Tab. 5) and 2 times with classification extended 
to 3 time frames with movement classification task for all 
the experimental subjects (see Col. 1 and 2 in Tab. 5). 
Using 5 frames gave the best results in all remaining cases 
and also with movement detection task. Three-class classi-
fication was not applicable for the Perceptron classifier and 
the classification with SVM achieved unsatisfactory results 
as SVM is not inherently designed for three-class prob-
lems. Results achieved with the LVQ classifier were also 
unsatisfactory: while the resting EEG was classified cor-
rectly, the movement-related EEG was frequently classified 
as resting. 

8. Conclusions and Next Steps 
The work compares various approaches to movement-

related EEG classification of closely localized movements.  

Classification system based on HMM achieves the 
highest classification score. The a priori information 
inserted into the HMM architecture helps to increase recog-
nition score compared to the standard neural network clas-
sifiers even with TDNN-like extension.  

Static classifiers using a feature space which captures 
the temporal dynamics of the data were found suitable for 
movement detection but classification scores reached with 
movement classification were too low for practical appli-
cation. However, they can be used to parameterize an EEG 
signal to get an additional feature space dimension for the 
HMMs indicating ongoing movement (like voice activity 
detector for the speech processing). 

Classification scores achieved in our experiment are 
comparable with discriminating extension and flexion of 
right wrist [26], unfortunately, works [27] and [24] did not 
provide classification scores between the different move-
ment types. Our overall results are proven as credible by 
the detailed analysis of the database and classification 
results. 

We showed that classification of closely localized 
movement of the same limb is possible, which is important 
for utilization in rehabilitation [16]. The proposed classi-
fication system is also expected to be able to work with 
imagined movements as demonstrated in [18]. Finally, 
since it uses the temporal developments of EEG signals, it 
also should be easily extendable to classify different types 
of movements allowing a high-resolution EEG-based 
movement classification. 

The classification works using only one signal source, 
which is also an improvement comparing to a need for all 
the scalp potentials used in traditional common spatial 
filter-based approach. 

We have shown that classification of closely localized 
movements is possible solely on the base of their temporal 
development. We expect that using the additional temporal 
dimension will improve resolution of existing BCI systems 
mostly utilizing the spatial approach as dynamic classifica-
tion can be also applied to reconstructed movement-related 
EEG by PCA or ICA, or directly to the movement-related 
components. 

Currently, we have been recording a new EEG data-
base without drawbacks present in the EEG database used 
in this paper. The new database is recorded under less 
controlled conditions in order to make the procedure closer 
to the real BCI use and contains movement-related EEG of 
flexion and extension movements of index fingers of both 
hands to further increase the number of recorded EEG 
states. Our first results with HMM and FFT features are in 
compliance with the results presented in this paper. Al-
though the achieved classification scores with the new 
database are lower that those presented in this paper yet, 
finger extension and flexion movements are distinguish-
able. We will incorporate the ICA in our future experi-
ments in order to asses the performance of both temporal 
and spatial approach. 
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