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Abstract. Video transmitted over unreliable environment, 
such as wireless channel or in generally any network with 
unreliable transport protocol, is facing the losses of video  
packets due to network congestion and different kind of 
noises. The problem is becoming more important using 
highly effective video codecs. Visual quality degradation 
could propagate into subsequent frames due to redundancy 
elimination in order to obtain high compression ratio. 
Since the video stream transmission in real time is limited 
by transmission channel delay, it is not possible to re-
transmit all faulty or lost packets. It is therefore inevitable 
to conceal these defects. To reduce the undesirable effects 
of information losses, the lost data is usually estimated 
from the received data, which is generally known as error 
concealment problem. This paper discusses packet loss 
modeling in order to simulate losses during video trans-
mission, packet losses analysis and their impacts on the 
motion vectors losses.  
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1. Introduction 
Packet data transmitted over wireless environment, 

e.g. WiFi, or in generally any network with unreliable 
transport protocol, is facing the losses of packets due to 
network congestion and noises of different kinds. If video 
signals coded with some of advanced video coding stan-
dard are transmitted, these losses have severe impact on 
resulting video quality due to highly effective redundancy 
elimination in video coding process. Visual quality degra-
dation could propagate to the subsequent frames due to 
redundancy elimination in order to gain high compression 
ratio. Therefore it is necessary to know in which way the 
packets are lost and one of the possible ways to learn about 
losses is creation of networks model. 

The impact of packet loss can be studied from re-
corded measurement traces of traffic and loss patterns. To 
generate error process with similar characteristics as ob-
served in measurements, stochastic model can be modeled 

[1]. The most popular examples of such models are dis-
crete-time Markov chain models. The use of discrete-time 
Markov chain models, particularly the 2-state Markov 
chain model (sometimes called the Gilbert model) has been 
proposed in [2]. Discrete-time Markov chain models of 
increasing levels of complexity, including the 2-state 
Markov chain model have been described in [2], [3]. 

Obviously, the usage of Gilbert model is quite simple, 
but its major drawback is inability to correctly model 
heavily tailed error runs. In such cases, hidden Markov 
models with up to five states are used to model the distri-
bution of error and error-free burst lengths [4]. 

Consequently, appropriate error control, recovery or 
error concealment methods, which have been developed 
over the times, can be chosen. 

On the one hand, traditional error control and recov-
ery methods for data communication are focused on loss-
less reconstruction of damaged video signal, but they also 
increase amount of data to be transmitted. However, these 
techniques introduce some redundancy. On the other hand, 
signal reconstruction and error concealment have been 
proposed to obtain close approximation of the original 
signal or attempt to make the output signal at the decoder 
less objectionable to human eyes [5]. 

Error concealment methods can be classified into 
three categories: 1) spatial, 2) temporal, 3) hybrid. Spatial 
error concealment techniques use the information from the 
surrounding correctly received or already concealed blocks 
to reconstruct damaged area. Typical representative of this 
class is weighted pixel averaging algorithm. Temporal 
error concealment techniques use the information of the 
corresponding blocks from the previous/successive blocks 
to conceal corrupted block. Typical representative of tem-
poral error concealment methods is boundary matching 
algorithm and also methods based on Bayesian filtering 
theory. Hybrid error concealment techniques use the in-
formation from the spatial domain as well as information 
from the temporal domain [5]. 

This paper is focused on packet loss analysis resulting 
in creation of packet loss model for fixed network topol-
ogy, as well as for wireless topology. Consequently, cor-
rupted video sequences were concealed with particle filter 
based error concealment. 
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2. Packet Loss Modeling 
In order to evaluate quality of transmission, let’s have 

random variable X. If packet is not lost, then X = 0, other-
wise X = k for k lost packets. After that, we can build loss 
model with infinite number of states (m is infinite value – 
see Fig. 1). Such model gives us opportunity to model 
packet loss probabilities in dependence on burst lengths 
(several consecutively lost packets). For each additional 
lost packet, which adds to the length of a loss burst, a state 
transition takes place. If packet is correctly received, then 
the state returns to X = 0 [8]. 

 
Fig. 1. Loss model with infinite number of states (m→∞). 

State probability for system with k > 0 is P(X ≥ k). 
For finite number of received packets a, state probabilities 
of the system with k > 0 can be approximated with cumu-
lative loss rate [8]: 
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Cumulative loss rate for k = 0, thus for no loss case, can be 
computed using the following equation: 
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where ok(on) is occurrence of loss with length k (n). 

2.1 Loss Model with Limited Number of 
States 

In order to model packet losses during video or audio 
transmissions, it is sufficient to use models with limited 
number of states due to strict requirements, which have to 
be fulfilled, i.e. it is useless to transmit multimedia through 
a network with long consecutive packet losses. 

Three the most commonly used models with limited 
number of states are: the k-th order Markov chain model, 
the 2-state Markov chain model and the Bernoulli loss 
model. 

2.2 K-th Order Markov Chain Model 

K-th order Markov chain model has similar perform-
ance measures as model with infinite number of states, 
however state probability for finite state m is added and 
also probability for transition from m to m is added. Thus 
for cumulative loss holds the following term [8]: 
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For burst loss mk   holds: 
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and for conditional loss mk  holds: 
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where d is the number of dropped packets: 
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K-th order Markov chain model is also known as Extended 
Gilbert model [9]. 

2.3 Gilbert Model 

Packet loss measurements on the Internet have shown 
that the probability of loss episodes of length k decreases 
approximately geometrically with increase of k [10]. Thus 
it is possible to use simpler packet loss model, e.g. Gilbert 
model. 

A special case of k-th order Markov chain model is 
Gilbert model with 2k , see Fig. 2. 

 
Fig. 2. Gilbert model. 

In this model, 0 represents state with no packet loss 
and on the other hand 1 represents the state of packet being 
lost. 

The matrix for transition probabilities and for state 
probabilities can be expressed in form: 
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For unconditional probability P(X = 1) holds the 
following equation: 
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If previous packet is lost, then for conditional 
probability of having loss holds: 
 101)1|1( pXXP  . (9) 

Gilbert model memorizes only the previous state, thus 
the probability, that the next packet will be lost is 
dependent only on the previous state. 
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Transition probabilities p01 and p10 can be expressed 
with the following equations: 
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The probability of having a lost episode with length k [10]: 
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2.4 Bernoulli Model 

The simplest way, how to model packet losses, is 
using Bernoulli model. In this model, the probability, that 
the packet is lost or correctly received is independent on all 
other values [2]. 

Bernoulli model can be characterized by a single 
parameter r, which describes the probability of packet 
being lost [2]: 

 
n

n
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where ni is the number of times, when packet loss has 
occurred and n is the total number of packets. 

3. Bayesian Filtering 
Filter theory is the theory of sequentially estimating 

the underlying state of a system using measurements 
obtained over time [11]. Bayesian approach to the filtering 
provides base for the dynamic state estimation problems. 
Bayesian filters provide a statistical tool for dealing with 
measurement uncertainty. Bayesian filters estimate a state 
of dynamic system from noisy observations. These filters 
represent the state by random variable and in each time 
step, probability of distribution over random variable 
represents the uncertainty. [6] 

In Bayesian approach, we attempt to construct the 
posterior PDF of the state given the all measurements. All 
available information is used to form such PDF. Thus, this 
PDF represents complete solution [12]. 

Let xk, k  N be the state sequence [12]: 
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where fk is in generally non-linear function of the previous 
state xn
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known input, nx, nv, nu are dimensions of the state, process 
and input noise vectors. 

Next, let zk be the measurement [12]:  

 ),( kkkk nxhz   (15) 

where 
zn

k Rz  , hk is non-linear measurements function, 
nn

kn   is measurement noise, nz, nn are dimensions of the 
measurement and measurement noise vectors. We want to 
find estimate of the xk based on all available measurements 
at time k (marked as z1:k) by constructing the posterior PDF 
p(xk, z1:k). It is assumed, that initial PDF p(x0z0)  p(x0) is 
available. Posterior PDF can be obtained recursively in two 
stages, namely prediction and update. Suppose, that 
required PDF p(xk-1z1:k-1) at time step k - 1 is available. 
Then using the system model it is possible to obtain the 
prior PDF at time step k [12]: 
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Prediction step usually deforms, spreads state PDF due to 
noise. 

Measurement zk is available at time step k, so it can be 
used to update the prior. Using Bayes rule, we obtain : 
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where the normalizing constant is: 
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In the update equation (18), the measurement zk is 
used to modify the predicted prior from the previous time 
step to obtain PDF of the state. 

Equations (16) and (17) theoretically allow optimal 
Bayesian solution. But it is only conceptual solution and 
integrals in these equations are intractable. Optimal solu-
tion exists in some restricted cases such as Kalman Filter 
and grid-based filters, but in some situations assumptions 
for these groups of filters do not hold. Then the use of 
suboptimal solution like particle filters and extended Kal-
man filters are suitable. 

4. Kalman Filter 
Kalman filter together with its basic variants are 

commonly used tools in statistical signal processing, espe-
cially in the context of causal, real-time applications. 

There are several approaches in the derivation of the 
Kalman filter. We can assume Gaussian distribution of the 
deriving process and of the initial state. In the next phase, 
we derive the posterior distribution of the states given the 
observations, taking the mean of the resulting distributions 
as the estimation of the state. The second approach com-
bines a recursive weighted least-squares method with spe-
cial weighting of the previous estimate of the states in the 
role of additional measurements [6]. 

To model state of the internal process, let’s assume 
that posterior density in time k - 1, p(xk-1zk-1), is Gaussian. 
Hence, p(xkzk) is also Gaussian. Next, random variables 
vk-1 and nk are independent with normal probability distri-
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butions and with covariances labeled as Qk-1 and Rk. fk(xk-

1vk-1) and hk(xknk) are linear functions. Hence, equations 
(14) and (15) for derivation of the optimal Bayesian 
solution can be rewritten to the form: 

 11   kkkkkk vuBxFx ,  (19) 
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where Fk and Hk are matrices defining the linear function 
[6]. In practice, these matrices and covariance matrices  
Qk-1, Rk might change with each time step or measurement. 
Since the Kalman filter is recursive estimator, only esti-
mated state from the previous time step and measurement 
at the current time step are needed to compute current state 
[7].  

Kalman filter is based on Bayesian filtering, and thus 
it works also in the two phases: prediction and update. 
Predict stage can be described with the following two 
equations: 
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where kkx |


 is the estimate of the state at time k given 

observations up to time k and 
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where Pkk is the error covariance matrix. Update stage can 
be described with the following equations : 
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where Kk is Kalman gain, 
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is update state estimate and 
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is update estimate covariance. 

With using least-square methods we obtain the same 
results. By using least-square method all the distributions 
are described by their means and covariances in the 
derivation procedure. 

4.1 Extended Kalman Filter 

Kalman filter can be used in estimation of the 
xn

k Rx  where posterior PDF is Gaussian in every time 

step. But in many cases this PDF is not-Gaussian and we 
need to use different approach such as approximate grid-
based method or extended Kalman filter. These methods 
are also labeled as sub-optimal algorithms [5], [6]. 

Again, let 
xn

k Rx  be the state sequence, but in 
opposite to the previous case, process is governed by the 
nonlinear stochastic difference equation: 
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with measurement zn
k Rz  : 
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where vk-1 and nk represent process and measurements 
noise vectors. In this case, functions f and h are non-linear. 
Function  f can be used to compute state in time step k from 
the previous estimate and function h can be used to com-
pute the predicted measurement from the predicted state. 

Extended Kalman filter is based upon approximation 
of the Bayes rule using linearization. Again, as well as 
Kalman filter, its extended version works also in two 
phases: prediction and update. Predict stage can be 
described using following equations: 

 ),ˆ( 1|11| kkkkk uxfx 



   (30) 

where 1| 



kkx is the estimate of the state at time k given 
observations up to time k-1 and 
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where 1| kkP  is the error covariance matrix. Update stage 
can be described with the following equations:  
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where Kk is Kalman gain, 
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is update state estimate and 
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is update estimate covariance. State transition and 
observation matrices are defined by following equations: 
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Equations for the extended Kalman filter shown 
above utilizes first term in a Taylor expansion of the non-
linear function. Utilizing higher order terms is possible, but 
computational complexity prohibited their use [15]. 

5. Particle Filter 
Particle filter is based on posterior density represen-

tation through set of random samples with associated 
weights. Subsequently, this information provides base for 
estimate computation [13].  

Let the posterior density p(x1:n, z1:n) be represented by 
random measure 
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nw  is the m-th particle trajectory at 
the time step n. 

The weights are normalized: 
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Posterior density at the time step n can be computed 
according to the following equation: 
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Particle filters are based on three operations: 

 particle generation, 

 particle weights computation, 

 resampling. 

The first two steps are also called sequential impor-
tance sampling (SIS). The filter making use of all three 
steps is called sample importance resampling (SIR) [15]. 

5.1 Particle Generation 

The particles xn
(m) are generated from importance 

density function π(xn). If importance density function 
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is chosen, then it is possible recursively compute the 
weights of each particle according the following equation: 
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The importance density function is the important part 
of particle filter designing, while it generates particles 
through which a desired probability density function is 
expressed [13]. 

5.2 Particle Weights Computation 

Particles weights computation and normalization are 
parts of this step. If the importance density function is 
described with (41), then the weights are updated 
according to the following equation [15]: 
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and normalization is done by 
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5.3 Resampling 

A common problem with particle filters is so-called 
degeneracy phenomenon. Over time, several weights be-
come high and other become negligible. Consequently, 
large computational effort is devoted to particles, which 
have only very small contribution to the approximation of 
the posterior density function [15]. The main goal of re-
sampling step is to eliminate the particles with small 
weights and to focus on particles with larger weights. The 
basic resampling algorithm takes two steps:  

 let 
)( )(~ mi
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(m) with probability pro-

portional to an
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i(m) represents memory indexes where particles are stored 
as a result of resampling step [13]. 

6. Packet Loss Analysis 

In experimental part of packet loss analysis, we have 
transmitted video sequence through a fixed network using 
RTP protocol. Therefore we have modeled network topol-
ogy in the Network Simulator - ns-2.  

The fixed network topology has consisted of 12 end 
stations, each connected to the separate router with 
100Base-TX Ethernet, and 1 video server, as is shown in 
Fig. 3. The bottlenecks were represented by serial connec-
tion between routers. The video server was the source of 
video sequences and the computer on the other side of the 
network was a video receiver. Other PCs have introduced 
some background traffic using FTP and CBR agents. The 
data rate used by these agents was 0.5 Mbs and it was tried 
to transmit several flows in each node (1 – 6 flows). The  
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RTP was chosen as the transport protocol, while it was 
primarily designed for real time multimedia transmission. 
The packet size was set to 1052 bytes with header of 28 
bytes. Several video sequences with different resolution 
(from QCIF to PAL) were used to build packet loss model. 

H.264 video codec was used to convert raw sequences. 
Prepared sequences were transmitted through the network 
modeled in ns-2 and packet sequence numbers with delay 
were logged. These values were used to build Gilbert 
model. 

 

Fig. 3.  Fixed network topology for packet loss analysis. 
 

The obtained transition matrix for one flow in each 
node and PAL video is: 
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So it is clear, that no errors have appeared during transmis-
sion. The situation is changing with increasing the number 
of flows in nodes. Transition matrices for two to six flows 
are: 
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In the second part of packet loss analysis, we have 
transmitted video sequence through a wireless network. 
The principle of obtaining data for the models creation of 
packets losses remained the same as for fixed network. The 
basic difference lies in the maximum achieved transfer rate, 
since standard 802.11g was chosen for wireless network. 

 

Fig. 4.  Wireless network topology for packet loss analysis. 
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The video stream source was in this case computer 
“PC1”, and the receiver was represented by “PC9”, see 
Fig. 4. 

The role of other network nodes was equivalent to 
the role of nodes in the fixed topology – to generate the 
consistent bit stream in random moments in time using 
FTP protocol.  

Two-state Markov model is particularly suitable for 
fixed networks, while in wireless networks, due to 
higher frequency of outages and burst losses, it is prefer-
able to use the N-state Markov model. N calculated in 
the model represents burst losses with the highest num-
ber of lost packets. Since the wireless network is more 
susceptible to failures in comparison with fixed network, 
packet losses are more common. This has resulted in 
frequent losses of motion vectors. 

7. Autoregressive Model of Motion 
Vectors 
Depending on the amount of movement in the 

image, space or time-adjacent vectors exhibit some 
degree of correlation. From this the possibility of lost 
motion vectors prediction arises based on information 
from neighboring block.  

The proposed system for losses creation and their 
subsequent concealment is shown in Fig.5.  

 
Fig. 5.  The scheme of the proposed algorithm employing 

particle filter. 

7.1 Median Filter 

A median filter is applied in the proposed method 
to reduce interference at the edges of the concealed 
block caused by incomplete replacement of the lost 
block. Median filtering is a nonlinear method of 
smoothing, which is capable to remove large differences 
in brightness values around some point. In this paper, 
however, it is shown that this is a convenient way how to 
eliminate so called "block effect".  

The essence of this method lies in ordering the lu-
minance values of pixels into the mask according to the 
size and the new luminance value is determined as the 
median of the sequence. The mask is designed according 
to where a concealed block and pixel to which we want 
to apply the median filter is. 

8. Statistical Distribution of Packet 
Losses  
The losses of the motion vectors can be considered 

to be noise in the motion vector field. Also components 
of motion vectors can be considered to be statistically 
independent [14]. 

It is possible to use Bayesian filtering methods to 
recover lost motion vectors. If the result of statistical 
analysis of the losses is occurrence of additive noise 
(Gaussian noise), then it is suitable to use Kalman filter. 
Bayesian filters for non-Gaussian environment could 
offer better performance in other cases. 

8.1 Simulation Scenario 

Input video sequences were encoded using H.264 
video codec and consequently, based on the previous 
obtained packet loss model, packet losses were applied 
randomly using Markov model. After that, motion vec-
tors from the correct video sequence and also from the 
damaged video sequence were extracted. While the dam-
aged video sequence has a lower number of motion 
vectors, zero motion vectors were added to the adequate 
place. 

The proposed algorithm with the prediction of mo-
tion vectors utilizing Kalman filter was verified on four 
standard video sequences, namely "Foreman", 
"Mother_Daughter", "Suzie" and "Stefan". All simula-
tions were performed in the MATLAB programming 
environment. In these sequences frames were randomly 
selected, in which the losses were generated. The num-
ber of blocks generated with a loss of motion vectors 
within the frame ranged from five to eighty and their 
position was random. As expected, the proposed method 
provides the best performance in the sequences 
"Mother_Daughter" and "Suzie". These two contain the 
smallest amount of movement. Thus, prediction of mo-
tion vectors in this case is considerably simplified. In 
video sequence “Foreman”, there is a significant amount 
of movement.  

The most difficult movements for the proposed 
algorithm of error concealment using motion vectors pre-
diction utilizing particle filter followed by edges 
smoothing using median filter were in the video 
sequence "Stefan". It contains a tennis match, and thus 
the greatest amount of movement. There was more than 
14 dB difference in average PSNR value between video 
sequence "Stefan" and video sequence "Mother and 
Daughter". Simulation results are displayed in Tab.1- 4.  

Of course, apart from the resulting reconstructed 
video quality, the time required to implement conceal-
ment of the lost block is also interesting. In our paper, 
we compare the time required for block prediction using 
Kalman filter with the proposed method. Moreover, in 
each table the time required to smooth edges of blocks 
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by using median filter is added to illustrate how much 
concealing time using particle filter it takes to smooth 
the edges. In each row of the table there is the average 
time required for concealment of one lost block. Time 

labeled as TPARTICLE consists of two values - the time 
required for the prediction using particle filter and time 
required for implementation of nonlinear smoothing 
using median filter. 

 

  

PSNR 
[dB] 

damaged
sequence 

PSNR 

Kalman 
filter 

PSNR 
Particle 

filter 
TKALMAN [s] 

TPARTICLE 
[s] 

TMEDIAN [s] 

1 24.228 65.496 65.775 0.000198 0.046933 0.000429 

2 23.972 59.654 60.771 0.000341 0.046725 0.000119 

3 21.346 46.781 47.522 0.000169 0.046549 0.000216 

4 21.673 39.086 41.734 0.000179 0.047791 0.000176 

5 19.797 48.342 49.44 0.000170 0.048098 0.000216 

6 19.334 48.68 49.328 0.000166 0.046418 0.000178 

7 18.682 43.923 44.891 0.000174 0.046602 0.000195 

8 18.212 44.577 44.608 0.000257 0.046874 0.000205 

9 17.425 43.104 45.014 0.000183 0.046415 0.000199 

10 16.574 46.128 49.555 0.000209 0.048696 0.000185 

11 17.073 40.818 43.026 0.000240 0.046554 0.000184 

12 16.069 44.935 47.843 0.000163 0.046505 0.000178 

13 15.993 39.432 43.45 0.000240 0.046908 0.000197 

14 15.611 38.059 41.131 0.000172 0.047198 0.000202 

15 15.142 41.894 45.123 0.000168 0.046832 0.000181 

16 14.799 38.226 40.972 0.000224 0.048239 0.000198 

Tab. 1.  Simulation results, video sequence Mother_Daughter. 

 

  

PSNR 
damaged 

sequence 

PSNR 
Kalman 

filter 

PSNR 
Particle 

filter 
TKALMAN [s] 

TPARTICLE 
[s] 

TMEDIAN 
[s] 

1 24.576 36.317 38.006 0.000178 0.046570 0.000444 

2 20.853 38.565 40.793 0.000219 0.046035 0.000183 

3 19.056 39.826 41.392 0.000194 0.046571 0.000180 

4 18.315 36.461 37.784 0.000169 0.046860 0.000187 

5 18.04 28.953 33.934 0.000254 0.046799 0.000208 

6 16.023 25.055 28.827 0.000247 0.046995 0.000188 

7 15.312 36.393 38.058 0.000247 0.046897 0.000198 

8 14.59 24.192 27.419 0.000165 0.046193 0.000179 

9 15.172 27.898 30.457 0.000210 0.046725 0.000200 

10 14.508 27.977 29.165 0.000211 0.046236 0.000188 

11 13.851 26.749 29.073 0.000187 0.047834 0.000206 

12 13.622 30.073 34.651 0.000170 0.047105 0.000186 

13 12.827 29.518 33.792 0.000163 0.047311 0.000189 

14 12.725 25.658 27.139 0.000167 0.047182 0.000179 

15 12.412 22.421 25.516 0.000200 0.047504 0.000177 

16 12.143 31.244 36.164 0.000232 0.047537 0.000191 

Tab. 2.  Simulation results, video sequence Stefan. 
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PSNR 
[dB] 

damag
edsequ

ence 

PSNR 

Kalman 
filter 

PSNR 
Particle 

filter 
TKALMAN [s] 

TPARTICLE 
[s] 

TMEDIAN [s] 

1 23.337 32.187 36.962 0.000247 0.046687 0.000747 

2 23.008 48.473 48.473 0.000241 0.046797 0.000602 

3 18.774 43.209 45.091 0.000241 0.046930 0.000058 

4 18.26 45.95 46.018 0.000480 0.046782 0.000192 

5 16.119 48.661 51.125 0.000220 0.047477 0.000245 

6 14.865 24.028 28.838 0.000232 0.046313 0.000180 

7 13.917 36.681 39.471 0.000168 0.047269 0.000190 

8 13.412 26.491 31.541 0.000166 0.047153 0.000164 

9 12.87 28.019 33.712 0.000210 0.047002 0.000198 

10 15.681 35.86 40.454 0.000193 0.046556 0.000190 

11 13.764 26.376 30.098 0.000180 0.046968 0.000175 

12 11.611 31.778 35.792 0.000166 0.046253 0.000171 

13 12.51 37.359 41.402 0.000193 0.046967 0.000202 

14 13.092 25.752 27.401 0.000169 0.046637 0.000193 

15 10.288 27.532 28.282 0.000210 0.047002 0.000201 

16 10.031 36.94 36.633 0.000205 0.051905 0.000179 

Tab. 3. Simulation results, video sequence Foreman. 

 

  

PSNR 
damaged 

sequence 

PSNR 
Kalman 

filter 

PSNR 
Particle 

filter 
TKALMAN [s] 

TPARTICLE 
[s] 

TMEDIAN 
[s] 

1 26.454 45.528 46.893 0.000169 0.046456 0.000703 

2 23.145 48.164 49.519 0.000179 0.046311 0.000217 

3 20.312 41.418 43.26 0.000191 0.046142 0.000350 

4 19.356 47.17 48.612 0.000182 0.046536 0.000192 

5 19.392 38.426 40.224 0.000179 0.048590 0.000169 

6 18.593 36.105 36.693 0.000189 0.046573 0.000173 

7 16.975 45.115 51.141 0.000167 0.046674 0.000175 

8 16.458 39.276 42.088 0.000196 0.047547 0.000192 

9 16.845 39.137 42.989 0.000206 0.046941 0.000193 

10 15.797 40.196 44.049 0.000171 0.046579 0.000207 

11 15.884 35.133 37.278 0.000169 0.045869 0.000194 

12 14.824 31.895 35.029 0.000198 0.046786 0.000167 

13 14.729 43.671 46.569 0.000194 0.046299 0.000180 

14 14.632 38.501 41.007 0.000168 0.046324 0.000179 

15 14.337 29.188 33.643 0.000193 0.046889 0.000157 

16 14.242 25.303 27.489 0.000173 0.048221 0.000194 

Tab. 4. Simulation results, video sequence Suzie. 

 
The results show that the mere median filter needs 

about the same time for smoothing as Kalman filter for 
prediction the lost motion vectors. Moreover, for the first 
block this time is always two or three times longer. The 
total time required for reconstruction of the lost motion 
information in the proposed method varies in value from 

0.045 to 0.051 sec. The time needed for concealment of 
losses in both cases is independent on the selected video 
sequence. Fig. 6, 7 and Fig. 8, 9 show an example of error 
concealment in the video sequences “Mother_Daughter” 
and “Stefan”. In given frames, 65 lost macroblocks were 
generated and then concealed. Since video sequence 
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“Stefan” contains much more movement than video 
sequence “Mother_Daughter”, it is possible to see visible 
artifacts in the concealed video sequence “Stefan”.  

Simulation results confirm expectations that improved 
recovery of lost information is due to computationally 
demanding procedures. It is therefore necessary to consider 
in which areas the proposed method can be used. 

 
Fig. 6. 65 corrupted macroblocks, videosequence 

Mother_Daughter. 

 
Fig. 7. 65 corrupted macroblocks, videosequence 

Mother_Daughter, concealed frame. 

 
Fig. 8. 65 corrupted macroblocks, video sequence Stefan. 

 
Fig. 9. 65 corrupted macroblocks, video sequence Stefan, 

concealed frame. 

9. Conclusion 
The aim of this work was to create models of packet 

failures transmitted over fixed and wireless networks and 
their subsequent application to video stream transfer. From 
obtained damaged video sequences motion vectors were 
subsequently extracted to determine the statistical distribu-
tion of noise arising as a result of motion information loss. 
Particle filter was used for error concealment. The pro-
posed method surpassed the previous algorithm based on 
Kalman filtering in image quality, but computational com-
plexity remains its significant disadvantage. One way how 
to solve this problem is the deployment of a partial filter 
employing Rao-Blackwell theorem. Such an approach 
should lead to better results in significantly lower amount 
of components necessary for correct estimation, and thus to 
reduction of the time required to predict the lost motion 
vectors. 
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