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Abstract. The paper describes a new approach to calcu-
lating the currents in a pn-diode based on the extension of 
the Shockley-Read-Hall recombination-generation model. 
The presented theory is an alternative to Schenk’s model of 
trap-assisted tunneling. The new approach takes into ac-
count generation and recombination as well as tunneling 
processes in pn-junctions. Using this model, the real “soft” 
I-V curve usually observed in the case of switching diodes 
and transistors was modeled as a result of the high con-
centration of traps that assist in the process of tunneling. 
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1. Introduction 
Electrical characteristics of gate dielectric stacks 

strongly affect the reliability and non-volatility of memory 
devices. Leakage currents in these stacks are adversely 
influenced by defects present in the dielectrics that act as 
deep energy levels and bring about indirect, trap-assisted 
tunneling (TAT) of charge carriers. Under certain densities 
and distributions of the traps in the dielectrics, the TAT 
leakage current may assume dominant magnitudes. 

In the last decade a number of models of TAT have 
been proposed [1 - 5]. In common, they allow to retrieve 
the energy levels and the densities of trapping centers by 
fitting the parameters of the models to experimentally 
obtained data. More recently, also a simple graphical 
method was developed for extraction of TAT parameters in 
thin n-Si/SiO2 structures [6]. 

Attempts have been made to formulate compact uni-
fied models of TAT [7 - 9], nevertheless, some questions 
remain still open and new approaches to the issue can be 
expected. 

Trap-assisted tunneling results in a reduction of the 
Shockley-Read-Hall (SRH) recombination lifetimes in the 
regions of strong electric fields [10, 11]. I-V characteristics 

of a reverse biased pn-junction are extremely sensitive to 
defect-assisted tunneling. The classical SRH model as-
sumes that intermediate trap centers with concentration Nt 
lie on a discrete energy level Et. In our model we assume 
that the discrete energy level Et is broadened due to inter-
actions of intermediate trap centers with multiphonon lat-
tice vibrations, which gives rise to a band of multiphonon 
excitation traps. 

2. Theory 
In our model, the distribution function Dt

i of the den-
sity of traps (index i denotes a particular donor or acceptor 
band of traps) in the band gap satisfies the normalizing 
condition 
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Here, M() is the multiphonon non-radiative transition 
probability for electron and hole capture [10]  

where S is the Huang-Rhys factor representing the elec-
tron-phonon coupling, ħ0 is the effective phonon energy, 
r = S ħ0 is the lattice relaxation energy,  =i

t/(ħ0), 
i

t =  - EC(x) + Ei
t, fB is the Bose distribution function 
1
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the bracket in the nominator is negative for ε > EC(x) – Et 
and positive for ε < EC(x) – Et.  
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The current densities in the considered structures are 
calculated by solving the basic semiconductor laws,  
– the Poisson equation and continuity equation. 

The continuity equations for electrons and holes can 
be written as 
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where Je
D, Jh

D are the drift-diffusion electron/hole current 
densities. 

In our model of recombination we do not work with 
recombination lifetimes. Instead of them we introduce a set 
of the so-called escape times characterizing the exchange 
of electrons between the trap and the conduction or valence 
band. The physical model of the generation-recombination 

terms SRHU , ,)THER(e
TATU  )TUN(e

TATU , )THER(h
TATU  and )TUN(h

TATU  

taking into account the effect of trap-assisted tunneling is 
based on exchange processes of free charge carriers be-
tween the trap and the conduction or valence band (see 
Fig. 1). Four processes of electron and hole generation and 
recombination described by the classical SRH model are 
completed by four electron and hole capture and release 
processes of tunneling to and from the traps, giving to-
gether 8 exchange processes characterized by 6 escape 
times e

R , e
G , h

R , h
G , e

CBT  and h
VBT  [12 - 14]. From 

these 6 escape times one can derive the generation-recom-
bination rates present in the continuity equations for elec-
trons and holes. 

2.1 Thermal Escape Times 

1) Escape time 
e
R,i  describes the transition of the 

electron from position x in the CB (conduction band edge) 
to a trap lying at position x with a loss of electron energy 
(phonon transition) 
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and σi is the trapping cross-section. 

2) Escape time 
e
G,i  describes the transition of the 

electron from the trap lying at position x to CB at position x 
with an increase of electron energy (phonon transition) 
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3) Escape time 
h
R,i  describes the transition of the hole 

from position x in the VB (valence band edge) to a trap 
lying at position x, with an increase of hole energy (phonon 
transition) 
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4) Escape time 
h
G,i  describes the transition of the hole 

from the trap lying at position x to VB at position x with a 
loss of hole energy (phonon transition) 
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2.2 Tunneling Escape Times 

5) Escape time 
e
CBT,i  describes the transition of the 

electron from the cross-section CEx   lying in CB to the 
trap T lying at position x and in the opposite direction 
without any change in electron energy (tunnel transition) 
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where me
R is the effective mass for calculating the electron 

Richardson constant in the semiconductor and 
e
TAT  is the 
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Fig. 1.  Eight exchange processes considered in the new model of trap-assisted band-to-band tunnelling. 
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probability of electron tunneling. In WKB approximation it 
is expressed as  
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Here, me
T

  is the electron effective tunneling mass.  

6) Escape time 
h
VBT,i  describes the transition of the 

hole from the cross-section VEx   lying in VB to trap T at 
position x and in the opposite direction without any change 
in hole energy (tunnel transition) 

             

)13(d),(
2

),(

1

)(
h
TAT32

h
R

h
VBT,

LV

V













xE

E

i

i

xx
σm

xτ



 

where mh
R is the effective mass for calculating the hole 

Richardson constant in the semiconductor and h
TAT is the 

probability of hole tunneling. In WKB approximation it is 
expressed as  
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where mh
T is the hole effective tunneling mass.  

2.3 Generation-Recombination Terms 

After computing the density of traps ),(t xDi  and sin-
gle escape times we can evaluate the generation-recombi-
nation terms occurring in (4) and (5). The generation-re-
combination terms are expressed in (17) to (21), where nFf  
and pFf  are the Fermi-Dirac distribution function for 
electrons and holes defined as  
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Parameter )(
CnF ExE   in (15) denotes the Fermi quasi-

level for electrons at cross-section CEx   and )(
VpF ExE   

in (16) denotes the Fermi quasi-level for holes at cross-
section VEx  , see Fig. 1. In (20) and (21),  
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are the electron and hole driving forces, respectively. 

3. Results of Simulation 
The new TAT model was employed in simulations of 

a pn-diode with a linear concentration profile (Fig. 2) 

prepared on a phosphorous doped silicon substrate 
(ND=2.5×1018 cm–3) with orientation <111> by boron diffu-
sion from an infinite source with surface concentration 
NA=1019 cm–3 at a temperature of 1020°C for 30 minutes. 
The structure was contaminated by gold, which forms one 
acceptor band of traps (i=A) at a distance of Et

A=0.54 eV 
from the conduction band edge. The concentration of the 
atoms of gold was assumed to be Nt

A=1014 cm–3. The 
effective cross section was set for electrons and holes 
constant σA=10–15 cm2. For evaluating the tunneling escape 
times τeCBT, effective masses mR

e=2.19 m0 and for τhVBT, 
mR

h=0.66 m0 were used [15]. The tunneling probability was 
calculated using the WKB approximation and the effective 
masses were set as mT

e=0.26 m0 and mT
h=0.37 m0. 

Fig. 3 shows the simulated reverse I-V curve. For 
comparing the influence of TAT mechanisms the I-V curve 
calculated only with the SRH model is depicted as well. 
Trap-assisted-tunneling results in an increase of the current 
in the middle voltage region, resulting to a “soft” shape of 
the I-V curve. At higher voltages, however, the influence of 
TAT mechanisms becomes negligible in comparison with 
band-to-band processes.  

Fig. 4 displays I-V characteristics with a constant 
Huang-Rhys factor S=4, for different effective energies 
ħω0=12, 24, 36, 48 and 60 meV. The change of ħω0 affects 
both the normalized distribution function DA(ħω0) and the 

normalizing integral 
C

V

d)(A
E

E

M  , thus the denominator 

in (2), see Figs. 5 and 6. This eventually affects the mul-
tiphonon broadening of the deep trap level. A decrease in 
the multiphonon effective energy has a dramatic impact 
upon the growth of the current density even if the density 
of traps Nt in the band remains unchanged. 

Fig. 7 shows the reverse I-V curves with a constant 
multiphonon effective energy ħω0= 24 meV for different 
values of the Huang-Rhys factor, S=2, 4, 6, 8 and 10. 
Similarly like the effective energy ħω0, the Huang-Rhys 
factor has an influence on the broadening of the band of 
traps. In Figs. 8 and 9 one can see how the Huang-Rhys 
factor affects the distribution function DA(S) and the nor-
malization integral. 

4. Conclusion 
It is obvious that multiphonon broadening of the band 

of traps and trap-assisted tunneling markedly affect the 
reverse currents in heavily doped pn-junctions. Our simu-
lations reveal that the effective energy ħ0 has a slightly 
stronger effect on the current than the Huang-Rhys factor. 
The new TAT model has the ability to describe the genera-
tion and recombination as well as the tunneling processes 
in pn-junctions. Using this model, the real “soft” I-V curve 
usually observed in the case of switching diodes and 
transistors was modeled as a result of the high concen-
tration of traps that assist in the process of tunneling. 
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Fig. 2.  Concentration profile of the simulated pn-diode. 
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Fig. 3.  Comparison of our TAT model with classical SRH model. 
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Fig. 5.  The distribution function in dependence on the 

effective energy ħω0≡Ef.. 

0.02 0.04 0.06 0.08 0.10
0

2

4

6

8

10

12

14

Effective energy (eV)

 

N
or

m
al

iz
at

io
n 

in
te

gr
al

 (
-)

S = 4

 
Fig. 6. Normalization integral for different effective energies 

ħω0=12, 24, 36, 48 and 60 meV and constant Huang-
Rhys factor S=4. 
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Fig. 7.  Reverse I-V characteristics curves for a constant mul-

tiphonon effective energy ħω0=24 meV, for different 
values of the Huang-Rhys factor, S=2, 4, 6, 8 and 10. 
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Fig. 8.  The distribution t function for different values of the 

Huang-Rhys factor, S=2, 4, 6, 8 and 10. 

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

N
o

rm
al

iz
at

io
n 

in
te

gr
a

l (
-)

 

Huang-Rhys factor S

h

/2 = 0.024 eV

 

Fig. 9. Normalization integral for different values of the 
Huang-Rhys factor S=2, 4, 6, 8 and 10, and constant 
ħω0=24 meV. 
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