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Abstract. This paper discusses the design of an 
electrostatic generator, power supply component of the 
self-powered microsystem, which is able to provide enough 
energy to power smart sensor chains or if necessary also 
other electronic monitoring devices. One of the 
requirements for this analyzer is the mobility, so designing 
the power supply expects use of an alternative way of 
getting electricity to power the device, rather than rely on 
periodic supply of external energy in the form of charging 
batteries, etc. In this case the most suitable method to use 
is so-called energy harvesting – a way how to gather 
energy. This uses the principle of non-electric conversion 
of energy into electrical energy in the form of converters. 
The present study describes the topology design of such 
structures of electrostatic generator. Structure is designed 
and modeled as a three-dimensional silicon based MEMS. 
Innovative approach involving the achievement of very low 
resonant frequency of the structure, while the minimum 
area of the chip, the ability to work in all 3 axes of the 
coordinate system and the ability to be tuned to reach 
desired parameters proves promising directions of possible 
further development of this issue. The work includes 
simulation of electro-mechanical and electrical properties 
of the structure, description of its behavior in different 
operating modes and phases of activity. Simulation results 
were compared with measured values of the produced 
prototype chip. These results can suggest possible 
modifications to the proposed structure for further 
optimization and application environment adaptation. 
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1. Introduction 
Due to great progress in the microelectronics there are 

applications with large demands on the individual 
components of the application chain. One example is an 
intelligent wireless sensor network [1] where each node 
needs to maximize the time that the sensor works and is 
independent of the energy supply from an external source. 
Using conventional batteries is not always convenient, 
because it requires human intervention for their replace-

ment. For this reason it is a major problem to get electricity 
needed to operate these devices. One way to ensure power 
is to use other types of energy that are available in the 
vicinity of the powered device. Most of these devices use 
(depending on usage field) the heat, light or mechanical 
energy. In this way, gaining power can meet energy 
requirements throughout the life of the powered device. 
The process of obtaining energy from the environment, 
converting it into consumable electricity is generally 
known as energy harvesting. Devices using the principles 
of gathering energy are usually referred to as energy 
generators.  

1.1 Sources of Energy Harvesting 

The classification of energy harvesting can be 
organized on the basis of the form of energy they use to 
scavenge the power. For example piezoelectric harvesting 
devices scavenge mechanical energy and convert it into 
usable electrical energy. The various sources for energy 
harvesting are wind turbines, photovoltaic cells, thermo-
electric generators and mechanical vibration devices such 
as piezoelectric devices, electromagnetic devices. Tab. 1 
shows some of the harvesting energy sources with their 
power generation capability. The general properties to be 
considered to characterize a portable energy supplier are 
described by Fry, et al. [2]. 
 

Energy Source Power Density 

Acoustic 
Pressure 

0,003 Wcm-3 (75 dB)  
0,96 Wcm-3 (100 dB) 

Temperature 10 Wcm-3 
HF EM field 1 Wcm-2 

Light 
10 mWcm-2 (direct sun light) 

100 Wcm-2 (office conditions) 

Vibrations 
4 Wcm-3 (human power) 
800 Wcm-3 (machines) 

200 Wcm-2 (piezo) 
Airflow 1 Wcm-2 

Tab.1. Power density of different energy sources. 

Typical forms of ambient energy can be considered as 
solar radiation, mechanical (vibrational) energy, thermal 
energy or RF or microwave radiation. Sources working on 
the principle of collecting electrical energy can be used to 
extend run-time or can be used as an additional source in 
conjunction with a conventional power source (battery) or 
they can completely replace these primary power units [3]. 
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9. Characterization 
A measurement chain for modal frequencies can be 

seen in Fig. 24. We use Capacitance Bridge with periodic 
signal excitation. The generator is placed on a vibration 
table KCF ES02 with KCF PA5100 signal generator. 

 
Fig. 24. Measurement chain for generator characterization, 

10. Conclusions 
The proposed generator is able to work in all 3 axes, 

has very low modal frequencies (about 108 Hz), in-build 
stops-structures against damage of the electrodes and very 
small dimensions. These properties make it possible to use 
this generator in embedded systems. It is proposed to be 
used in combination with piezoelectric source which acts as 
start-up source. 
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