
374 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

Reliable and Efficient Procedure for Steady-State Analysis
of Nonautonomous and Autonomous Systems

Josef DOBEŠ 1, Viera BIOLKOVÁ 2

1Department of Radio Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic
2Department of Radio Electronics, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic

dobes@fel.cvut.cz, biolkova@feec.vutbr.cz

Abstract. The majority of contemporary design tools do not
still contain steady-state algorithms, especially for the au-
tonomous systems. This is mainly caused by insufficient ac-
curacy of the algorithm for numerical integration, but also
by unreliable steady-state algorithms themselves. Therefore,
in the paper, a very stable and efficient procedure for the nu-
merical integration of nonlinear differential-algebraic sys-
tems is defined first. Afterwards, two improved methods are
defined for finding the steady state, which use this integra-
tion algorithm in their iteration loops. The first is based on
the idea of extrapolation, and the second utilizes nonstan-
dard time-domain sensitivity analysis. The two steady-state
algorithms are compared by analyses of a rectifier and a C-
class amplifier, and the extrapolation algorithm is primarily
selected as a more reliable alternative. Finally, the method
based on the extrapolation naturally cooperating with the
algorithm for solving the differential-algebraic systems is
thoroughly tested on various electronic circuits: and Col-
pitts oscillators, fragment of a large bipolar logical circuit,
feedback and distributed microwave oscillators, and power
amplifier. The results confirm that the extrapolation method
is faster than a classical plain numerical integration, espe-
cially for larger circuits with complicated transients.

Keywords
Numerical integration, steady-state algorithm, period,
extrapolation, epsilon-algorithm, sensitivity analysis.

1. Introduction
Although the mathematical background for finding the

steady state is available for several decades, the majority of
contemporary software tools do not still contain reliable pro-
cedures for this type of analysis, especially for autonomous
circuits. It is particularly caused by insufficient precision of
solving the nonlinear systems of differential-algebraic equa-
tions that always serve as a core of a steady-state algorithm
of any kind. With such an imprecision, it is impossible to

detect a period because the solution does not return to the
same value after a period-long numerical integration. More-
over, identification of the period is even more difficult for the
autonomous circuits in such cases.

Those problems are reflected by the status of the signif-
icant software tools of this area. The majority of the PSpice
programs do not contain a steady-state algorithm at all [1]. In
the software tools that are specialized in the radio engineer-
ing, a semiautomatic method is only implemented [2]. In
the contemporary rapidly developing programs such as [3],
new procedures for the steady-state analysis have been im-
plemented recently, and their code is still developed.

A status of the methods for solving the differential-
algebraic systems that are implemented in the majority of the
fundamental simulators is reflected in [4]. However, even the
standard methods are continuously developed, and the up-
dates are published in novel editions of the classical books
such as [5]. Moreover, radically new methods have arisen re-
cently that are dedicated to the still remaining problem with
the stability of the algorithms, which are represented by [6].

2. Core of the Procedure – Algorithm
for Numerical Solution of Nonlinear
Differential-Algebraic Systems

2.1 Transient Analysis

A system of nonlinear algebraic-differential equations
of a circuit is generally defined in the implicit form [4], [5],
[6]

f
[
x(t), ẋ(t), t

]
= 0. (1)

Let us now assume that the first n steps of the numeri-
cal integration of (1) have been finished. Let us mark x(tn)
by xn and define the backward scaled differences

δ(0)xn = xn,

δ(k)xn = δ(k−1)xn − α(k−1)
n δ(k−1)xn−1,

n = 1, . . . , k = 1, . . . , kn + 2 (2)

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 375

where kn is the order of the polynomial interpolation used
in the last integration step, and the α(...)

n multipliers are also
determined in the recurrent way

α(0)
n = 1,

α(k)
n = α(k−1)

n

tn − tn−k
tn−1 − tn−1−k

, k = 1, . . . , kn + 1. (3)

A prediction of circuit variables (predictor) for the next
chosen time (i.e., for tn+1) marked by x(0)

n+1 is determined
by the polynomial extrapolation using the backward scaled
differences (2)

x
(0)
n+1 =

kn+1∑
k=0

α
(k)
n+1 δ

(k)xn, (4)

which is a more sophisticated form of the Newton interpo-
lation polynomial – a comprehensive proof can be found in
Theorem 1 in [7].

By differentiating (4) with respect to tn+1, the predic-
tor of time derivatives can also be expressed in a similar way

ẋ
(0)
n+1 =

kn+1∑
i=0

β
(i)
n+1δ

(i)xn (5)

where the β multipliers may simply be derived from the re-
current form (3) in terms of the α ones

β(0)
n = 0,

β(i)
n =

α
(i−1)
n + (tn − tn−i)β(i−1)

n

tn−1 − tn−1−i
, i = 1, . . . , kn.

(6)

(Using (6) in (5) needs replacing the subscript n by n + 1,
of course.)

The correction of circuit variables xn+1 := x
(jmaxn+1)
n+1

(corrector) for tn+1 is determined by the iterations of the
modified Newton-Raphson method[(

∂f

∂x

)(j)

n+1

+ γn+1

(
∂f

∂ẋ

)(j)

n+1

]
∆x

(j)
n+1 = −f (j)

n+1,

n = 0, . . . , j = 0, . . . , jmaxn+1
, (7)

i.e., by repeated solving the linear system (7) with the appli-
cation of the γn+1 factor determined in the following way
(more details can be found in the proof of Theorem 2 in [7]):

ẋ
(j)
n+1 = lim

tn+2→tn+1

x
(j)
n+2 − xn+1

tn+2 − tn+1

=

kn+1∑
i=1

1

tn+1 − tn+1−i
δ(i)x

(j)
n+1

⇒ γn+1 =

kn+1∑
i=1

1

tn+1 − tn+1−i
,

(8)

which gives the classical formula γn+1 = 1/(tn+1 − tn) =
1/∆tn+1 if the first-order method (i.e., Euler’s one) is used.

After resolving the linear system (7), the vectors x(...)
n+1

and ẋ(...)
n+1 are modified by the following standard equations:

x
(j+1)
n+1 = x

(j)
n+1+∆x

(j)
n+1, ẋ

(j+1)
n+1 = ẋ

(j)
n+1+γn+1∆x

(j)
n+1,

(9)
which completes the (j + 1)th iteration of the (n+ 1)th step.

The stability of the corrector iterations can be improved
using the logarithmic damping of divergence, which consists
in replacing each element ∆x

(j)
n+1i

of the vector ∆x
(j)
n+1 by

the following sophisticated formula before executing (9)1:

∆x
(j)
n+1i

:= sgn
(
∆x

(j)
n+1i

) ∣∣x(j)
n+1i

∣∣+ xnulli

di

× ln

(
1 + di

∣∣∆x(j)
n+1i

∣∣∣∣x(j)
n+1i

∣∣+ xnulli

)
, i = 1, . . . , nx. (10)

The parameters di are appropriate damping factors (which
are mostly the same ∀ i), the parameters xnulli → 0+ pre-
vent from possible division by zero, and nx is the dimension
of the vector x.

A new length of the integration step ∆tn+2 and a new
order of the polynomial interpolation kn+2 are to be chosen
after the convergence of the corrector (7) and (9). Firstly, an
estimation of the interpolation error in the last step must be
determined. In general, the absolute truncation error for the
kn+1 order caused by the derivatives approximation (8) may
be written as

en+1i =
∆tn+1

tn+1 − tn−kn+1

δ(kn+1+1)xn+1i (11)

for any element xn+1i of the vector xn+1. The relation (11)
for the element en+1i

of the absolute truncation error vector
en+1 must be modified in the following way:

• the absolute errors must be replaced with relative ones
(for any error to be comparable with another one and
with an algorithm control parameter),

• the fraction ∆tn+1/(tn+1 − tn−kn+1
) will be omitted

(to give a preference to simpler and more stable lower
interpolation orders).

Consequently, the relative truncation error acquires the
simple following form2

εn+1 = max
∀xn+1i∈xn+1

∣∣δ(kn+1+1)xn+1i

∣∣
|xn+1i|+ xnulli

= max
∀xn+1i∈xn+1

∣∣xn+1i − x
(0)
n+1i

∣∣
|xn+1i|+ xnulli

(12)

1The idea of the logarithmic damping is based on the Maclaurin series ln(1 + x) = x− x2/2 + x3/3−+ · · · ≈ x for x→ 0.
2Similarly to that in the logarithmic damping, |x(j)n+1i

|+ xnulli is used instead of |x(j)n+1i
| to avoid possible zero division.

376 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

(see the final equality in the proof of Theorem 1 in [7], and
(4) as a simple derivation of the second equality in (12)).
Therefore, the truncation error can be checked by the differ-
ence between the corrector and predictor values — the step
may be rejected and halved even after the first iteration of
the corrector if the truncation error seems too big.

Secondly, the new step and order are determined by
means of the calculated error (12). Generally, the truncation
errors of the ith interpolation order can be determined by the
formulae (consider mth components of en+1|n+2 with the
greatest error)

e
(i)
n+1m

= const.
(i)
n+1m

(
di+1xm
dti+1

)
n+1

∆ti+1
n+1,

e
(i)
n+2m

= const.
(i)
n+2m

(
di+1xm
dti+1

)
n+2

∆ti+1
n+2.

The new step estimate is based on the assumption of a simi-
larity of neighboring steps

const.
(i)
n+1m

≈ const.
(i)
n+2m

,(
di+1xm
dti+1

)
n+1

≈
(

di+1xm
dti+1

)
n+2

,

which gives the relation

e
(i)
n+2m

e
(i)
n+1m

≈
(

∆tn+2

∆tn+1

)i+1

,
ε

(i)
n+2

ε
(i)
n+1

.

The error in the following integration step is to be equal to
ε— prescribed relative truncation tolerance, i.e. (∆tn+1 is
already known when ∆t

(i)
n+2 are to be compared ∀ possible

interpolation orders i)

∆t
(i)
n+2 = ∆tn+1 i+1

√
ε

ε
(i)
n+1

, i = 1, . . . , kn+1 + 1 (13)

where all the possible truncation relative errors ε(i)
n+1 are

computed directly by the δ(i+1)xn+1 (this is why the dif-
ferences (2) are defined up to the kn + 2 order — so that
the order of the polynomial interpolation can sequentially
increase). However, the step increase is limited due to the
stability conditions, especially for the higher orders of the in-
terpolation — the proof for that can be found in the stability
comparisons of the basic implicit integration formulae in [8].
Therefore, the relation (13) must be modified by a semiem-
pirical factor (for stiff systems, it is some limitation)

∆t
(i)
n+2 =


∆tn+1 i+1

√
ε

ε
(i)
n+1

for
ε

ε
(i)
n+1

< 4,

∆tn+1
i+1
√

4 otherwise,

i = 1, . . . , kn+1 + 1 (14)

where the limiting factor i+1
√

4 can be theoretically derived
under special circumstances only: in [8], a proof is created

for a scheme with the fixed step size. However, this factor
has also been proven by thousands of practical analyses with
schemes with largely variable step size, as well. In conclu-
sion, the new kn+2 order (kn+2 ∈ {1, . . . , kn+1 + 1}) is
chosen whose step determined by (14) is the longest one.

The whole method fulfills the A-stability condition [6].

2.2 Operating Point Analysis

The operating point analysis is performed using the
static variant of (1)

f (x0,0, t0) = f0 (x0) = 0, (15)

which is solved by the static variants of (7) and (9):

(
∂f0

∂x0

)(j)

∆x
(j)
0 = −f (j)

0 , x
(j+1)
0 = x

(j)
0 + ∆x

(j)
0 ,

j = 0, . . . , jmax0
. (16)

2.3 Novel Methods for Suppressing Divergence

However, the convergence in the operating point analy-
sis is often more problematic than that in the transient analy-
sis (in the transient analysis, the final values of the previous
time step serve as a good estimation for the following time
step). To avoid possible divergence in both static and dy-
namic domains, a new control procedure has been developed
for handling the differences ∆x

(j)
n+1 during each iteration in

the following way:

if j = 0 then

x∗ := x
(0)
n+1,

ẋ∗ := ẋ
(0)
n+1,

∆x∗ := ∆x
(0)
n+1,

f∗ := f
(0)
n+1, and the (first) iteration is accepted,

else

if ‖f (j)
n+1‖ < 1 then

x∗ := x
(j)
n+1,

ẋ∗ := ẋ
(j)
n+1,

∆x∗ := ∆x
(j)
n+1,

f∗ := f
(j)
n+1, and the iteration is accepted,

else

∆x∗ :=
∆x∗

2
,

x
(j)
n+1 := x∗,

ẋ
(j)
n+1 := ẋ∗,

∆x
(j)
n+1 := ∆x∗, and the iteration is rejected,

(17)

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 377

where the Euclidian norm ‖f (j)
n+1‖ has been confirmed in the

two of possible four forms:

‖f (j)
n+1‖=


1

nx

nx∑
i=1

|f (j)
n+1i
|

|f∗i |+ fnulli

(the firstly used form [9]),√√√√ 1

nx

nx∑
i=1

(
f

(j)
n+1i

|f∗i |+ fnulli

)2

(a novel form [7]).

(18)

Note that in [7], two additional forms have been tested.
However, from the totally four tested forms, only the two
ones shown in (18) have been approved as sufficiently reli-
able. The modified method checks the function values (i.e.,
each element f (j)

n+1i
of f (j)

n+1) after each iteration. The ba-

sic idea of handling the differences ∆x
(j)
n+1 in accordance

with (17) and (18) relates to the fundamental property of the
Newton-Raphson method. If the function values do not de-
crease, then the differences are halved and the iteration is re-
peated. The process of halving continues until the function
values decrease. It is doubtless that the occurrence of the de-
crease will be found, and therefore, the algorithm does not
even contain a check for a potential infinite loop. As a result,
only such ∆x

(j)
n+1 is used for updating the vector x(j)

n+1 that
ensures decreasing the function values according to the crite-
ria (18). The parameters fnulli → 0+ prevent from potential
division by zero, and x∗, ẋ∗, ∆x∗, and f∗ are auxiliary
vectors. The procedure (17) can be considered a generalized
and improved form of the static procedure [10, p. 149] for
the dynamic case. (In substance, this method is a variant of
the globally convergent ones.)

3. Description of the Two Steady-State
Algorithms

3.1 Procedure Built on the ε-Algorithm

The problem of computing the periodic steady state can
be simply formulated as a solution of the nonlinear symbolic
equation [11]

xss = I (xss, t0, t0 + Tss) (19)

where I (xic, t0, t0 + Tint) marks the solution vector after
the implicit numerical integration of (1) with an initial con-
dition xic on the interval Tint.

Instead of usual (and often very long) numerical inte-
gration of (1), much shorter one is performed. Samples of
the solution are immediately collected after each of the pe-
riods (which must be determined for autonomous circuits).
The samples become input for the scalar ε-algorithm [12],
[13] which is able to estimate a state of the system in future.
The outcome of the ε-algorithm becomes a new initial con-
dition for the system (1) and the process is repeated until the
steady-state is detected.

The number of periods needed for the extrapolation
loop depends on the number of slowly decaying transients.
This number can be reduced by a low-pass filtering per-
formed by numerical integration of a suitable length

x
(0)
j := xj (t0 + ∆textpol) =

∫ t0+∆textpol

t0

F [x(t), t] dt,

j = 1, . . . , jmax (20)

where j marks an iteration of the ε-algorithm, and ẋ(t) =
F [x(t), t] indicates a vector of functions to be integrated
in the numerical way. This is only a symbolic notation be-
cause the original system (1) is always implicit and cannot
be transferred to an explicit form. The parameter ∆textpol

is chosen so that the rapidly decaying transients are to be
insignificant at t0 + ∆textpol. After that low-pass filtering,
the extrapolation is assumed to be only concerned with the
slowly decaying transients and the order of the extrapolation
algorithm marked below by kextpol can be decreased corre-
spondingly. Note that the algorithm is relatively insensitive
to chosen values ∆textpol and kextpol, which will be demon-
strated on practical examples.

The vector x(0)
j represents the first sample for the ex-

trapolation algorithm. Entire sequence of the samples is also
obtained by the implicit numerical integration of (1)

x
(k)
j := xj

(
t0 + ∆textpol +

∑k
i=1T

(i)
j

)
=∫ t0+∆textpol+

∑k
i=1 T

(i)
j

t0+∆textpol

F [x(t), t] dt, k = 1, . . . , 2kextpol,

j = 1, . . . , jmax (21)

where T (i)
j are (generally unequal) periods that must be de-

tected for the autonomous circuits during the integration us-
ing (27). (They are known for the nonautonomous circuits.)

When the sampling is finished after the integration, the
scalar ε-algorithm starts after the initialization (note that due
to many other subscripts and superscripts necessary for the
exact definition of the ε-algorithm, the upper-left superscript
is used for marking an element of a vector in this subsection)

iε
(k)
−1 := 0, k = 1, . . . , 2kextpol,

iε
(k)
0 := ix

(k)
j , k = 0, . . . , 2kextpol,

i = 1, . . . , nx

(22)
by the extrapolation formulae

iε
(k)
m+1 := iε

(k+1)
m−1 +

1

iε
(k+1)
m − iε

(k)
m

,

m = 0, . . . , 2kextpol − 1, k = 0, . . . , 2kextpol − 1−m
(23)

for all elements iε
(k)
m+1, i = 1, . . . , nx of the vector ε(k)

m+1.
The outcome of the ε-algorithm becomes the new initial con-
dition of the system (1), i.e.,

xj+1 (t0) := ε
(0)
2kextpol

(24)

378 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

and the procedure is repeated until convergence is detected.
For breaking the iterations, an algorithm parameter εextpol —
allowable extrapolation error — is used in the following way:

if max
i=1,...,nx

∣∣ix(k)
j − ix

(k−1)
j

∣∣∣∣ix(k)
j

∣∣+ ixnull

5 εextpol then

xss := x
(k)
j ,

k ∈ 〈1, . . . , 2kextpol〉. (25)

For the nonautonomous circuits, breaking the iterations of
the ε-algorithm by (25) is possible only at forced periods.
For the autonomous circuits, the unknown periods are se-
quentially detected solving (27), and when the ε-algorithm
(and the integration algorithm, too) is stopped by (25), just
the last determined period is considered to be the final one.

The evolution of the ε-algorithm (22) and (23) can be
represented by the following diagram (the values in the cor-
ners of the triangles create new values sequentially in the
directions of the arrows):

iε
(0)
0

iε
(1)
−1 / → iε

(0)
1

iε
(1)
0 / → iε

(0)
2

iε
(2)
−1 / → iε

(1)
1

iε
(2)
0 . . .

.

. . .

(26)

An advantage of the above algorithm is a possibility of
its application on the autonomous circuits. The detection of
unknown periods is performed by searching the intersections
of suitably chosen ifix

th element of the vector of circuit vari-
ables xj with a suitably selected level xfix, i.e., by finding
tper that fulfills the condition

ifixxj(tper)− xfix = 0, ifix ∈ 〈 1, nx〉. (27)

The equation (27) can be solved in the similar way as that
in the operating point analysis (16) by the Newton-Raphson
method

ifixẋj(t
(`)
per)∆t

(`)
per = xfix − ifixxj(t

(`)
per),

t(`+1)
per = t(`)per + ∆t(`)per, ` = 1, . . . , `max.

Since the integration algorithm can interpolate both output
values (xj by (4)) and the derivatives of the output values
with respect to time (ẋj by (5)), a software arrangement of
such procedure is straightforward.

3.2 Procedure Built on the Sensitivity Analysis

Let the symbol notation be the same as that in the previ-
ous subsection, and an equation is defined for an error vector
ε in the classical way [11]

ε (xic, t0, t0 + Tint) = I (xic, t0, t0 + Tint)− xic (28)

with some initial condition xic, and we want the vector ε to
be zero. The solution of (28) can be found by means of the
Newton-Raphson method in the similar way to (7)

∂ε

∂xic

(j)

(xic, t0, t0 + Tint)∆x
(j)
ic = −ε(j)(xic, t0, t0 + Tint)

where j = 1, . . . , jmax marks the iteration index of the pro-
cedure. Let us note that in substance, the algorithm consists
in simultaneous running of the two procedures: integration
over the period, and minimization of the artificial equation
for the periodic steady state (28).

Computing the Jacobian ∂ε
∂xic

(j)

by means of (28), we
obtain[

∂I
∂xic

(j)

(xic, t0, t0 + Tint)− 1

]
∆x

(j)
ic =

− ε(j) (xic, t0, t0 + Tint) .

However, the expression ∂I
∂xic

(j)

(xic, t0, t0 + Tint) can be ef-
ficiently calculated if nonstandard time-domain sensitivities
x′ (t0 + Tint,xic) ≡ ∂x/∂xic (t0 + Tint,xic) are available:

∂I
∂xic

(j)

(xic, t0, t0 + Tint) =
∂x

∂xic

(j)

(t0 + Tint,xic) (29)

where the right side of (29) is an output of a procedure with
the built-in (and atypical) time-domain sensitivity analysis.
The method is built on the notation used in Sec. 2.1. A sys-
tem of parametric differential-algebraic equations of a circuit
can be symbolically written in the following implicit form

f
[
x(t, xici), ẋ(t, xici), t, xici

]
= 0 (30)

where xici is an element of the vector of the initial condi-
tions xic. By differentiating (30) with respect to xici and
using the abbreviations x′(t, xici) ≡ ∂x(t, xici)/∂xici and
ẋ′(t, xici) ≡ ∂ẋ(t, xici)/∂xici , we obtain base for deriving:

∂f

∂x
x′(t, xici) +

∂f

∂ẋ
ẋ′(t, xici) +

∂f

∂xici

= 0. (31)

Utilizing the formulae of Sec. 2.1, we can find a general re-
current formula for the requested time-domain sensitivities:[(

∂f

∂x

)
n+1

+ γn+1

(
∂f

∂ẋ

)
n+1

]
x′n+1 = −

(
∂f

∂xici

)
n+1

+

(
∂f

∂ẋ

)
n+1

kn+1∑
l=1

α
(l−1)
n+1 δ(l−1)x′n

kn+1∑
k=l

1

tn+1 − tn+1−k
,

(32)

which has the same Jacobian as that in (7) (for each xici) —
therefore, the time-consuming LU factorization of this ma-
trix must be executed only once for each tn+1, n = 0,
Note that the proof of (32) is considerably complicated and
can be found in a very comprehensive form in [9]. More-
over, let us emphasize that using the novel powerful recur-
rent formula (32) substantially enhances the efficiency of the
algorithm based on the sensitivity analysis.

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 379

Q

RL2

IL2C2I(t) R

C1

C3

L1

IL1

C4 C5

L3

IL3

L4IL4

V0

C6
V2 V3 V4 V5

V1 V6

Fig. 1. C-class amplifier used for comparison of two steady-state procedures based on ε-algorithm and time-domain sensitivity analysis.

R
D
IDI(t) C

L

IL

V2 V1

Fig. 2. Rectifier used for comparison of the two steady-state
procedures.

Utilized method The ε-algorithm Sensitivity analysis

Requested precision 0.000001 0.000001
Number of iterations 2 3
Number of periods 8 3

Tab. 1. Numbers of algorithm’s iterations and corresponding
periods of numerical integration for rectifier.

Utilized method The ε-algorithm Sensitivity analysis

Requested precision 0.01 0.0001 0.01 0.0001
Number of iterations 1 2 4 No conv.
Number of periods 10 20 4 No conv.

Tab. 2. Numbers of algorithm’s iterations and corresponding
periods of numerical integration for C-class amplifier.

3.3 Comparing Efficiencies of the Procedures
We have compared the efficiencies of the two steady-

state procedures based on the ε-algorithm and time-domain
sensitivity analysis by means of two typical examples. The
first one is a rectifier that is shown in Fig. 2, and the results
of the comparison are presented in Tab. 1. Seemingly, the ε-
algorithm looks more successful because it needs the lesser
number of iterations. However, from the point of view of
the number of periods of the numerical integration, the pro-
cedure based on the sensitivity analysis is better because it
needs the shorter total interval of integration.

Similar properties can be observed by analyzing a C-
class amplifier in Fig. 1 with the results that are shown in
Tab. 2. For the lower precisions, the algorithm based on the
sensitivity analysis is more efficient. Although it needs more
iterations again, the total number of the necessary periods is

lesser for this method. However, for the more precise analy-
ses, the algorithm based on the extrapolation is better. This
is mostly caused by a numerical way that software tools pre-
dominantly use for a computation of the sensitivities. (In this
example, the numerical method has also been used.) There-
fore, the ε-algorithm is generally better if a large precision is
claimed. However, if an analytical way is used for comput-
ing the time-domain sensitivities [9], the algorithm based on
sensitivities could be better. Unfortunately, the fixed built-in
models of semiconductor devices (that are very complicated)
do not contain necessary code for the symbolic evaluation of
the derivatives yet. That is why we prefer the ε-algorithm.

4. A Series of Tests of the ε-Algorithm

4.1 Van der Pol Oscillator
The Van der Pol oscillator represents a classical test for

the algorithms. We have analyzed it using a circuit analogy
in Fig. 3 with the quad function defined by an input language

function quad(qi, qu)

implicit real*10 (a-z)

quad = (qi ** 2 - 1) * qu

end

16 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

Q

RL2

IL2C2I(t) R

C1

C3

L1

IL1

C4 C5

L3

IL3

L4IL4

V0

C6

V2 V3 V4 V5
V1 V6

Fig. 1. C-class amplifier used for comparison of two steady-state procedures based on ε-algorithm and time-domain sensitivity analysis.

R
D
IDI(t) C

L

IL

V2 V1

Fig. 2. Rectifier used for comparison of the two steady-state
procedures.

Utilized method The ε-algorithm Sensitivity analysis

Requested precision 0.000001 0.000001
Number of iterations 2 3
Number of periods 8 3

Tab. 1. Numbers of algorithm’s iterations and corresponding
periods of numerical integration for rectifier.

Utilized method The ε-algorithm Sensitivity analysis

Requested precision 0.01 0.0001 0.01 0.0001
Number of iterations 1 2 4 No conv.
Number of periods 10 20 4 No conv.

Tab. 2. Numbers of algorithm’s iterations and corresponding
periods of numerical integration for C-class amplifier.

3.3 Comparing Efficiencies of the Procedures

We have compared the efficiencies of the two steady-
state procedures based on the ε-algorithm and time-domain
sensitivity analysis by means of two typical examples. The
first one is a rectifier that is shown in Fig. 2, and the results
of the comparison are presented in Tab. 1. Seemingly, the ε-
algorithm looks more successful because it needs the lesser
number of iterations. However, from the point of view of
the number of periods of the numerical integration, the pro-
cedure based on the sensitivity analysis is better because it
needs the shorter total interval of integration.

Similar properties can be observed by analyzing a C-
class amplifier in Fig. 1 with the results that are shown in
Tab. 2. For the lower precisions, the algorithm based on the
sensitivity analysis is more efficient. Although it needs more
iterations again, the total number of the necessary periods is

lesser for this method. However, for the more precise analy-
ses, the algorithm based on the extrapolation is better. This
is mostly caused by a numerical way that software tools pre-
dominantly use for a computation of the sensitivities. (In this
example, the numerical method has also been used.) There-
fore, the ε-algorithm is generally better if a large precision is
claimed. However, if an analytical way is used for comput-
ing the time-domain sensitivities [9], the algorithm based on
sensitivities could be better. Unfortunately, the fixed built-in
models of semiconductor devices (that are very complicated)
do not contain necessary code for the symbolic evaluation of
the derivatives yet. That is why we prefer the ε-algorithm.

4. A Series of Tests of the ε-Algorithm

4.1 Van der Pol Oscillator

The Van der Pol oscillator represents a classical test for
the algorithms. We have analyzed it using a circuit analogy
in Fig. 3 with the quad function defined by an input language

function quad(qi, qu)

implicit real*10 (a-z)

quad = (qi ** 2 - 1) * qu

end

v1

F1/quad(iL1,v1)C1/1F

+

L1/1H

Fig. 3. Circuit analogy of Van der Pol oscillator.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

Extrapol. 13 7 12 55 115 108 310

Tab. 3. Numbers of integration steps necessary for the core of
the extrapolation algorithm. Interpolation polynomi-
als of up to 6th order are generally used at integrating.

Fig. 3. Circuit analogy of Van der Pol oscillator.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

Extrapol. 13 7 12 55 115 108 310

Tab. 3. Numbers of integration steps necessary for the core of
the extrapolation algorithm. Interpolation polynomi-
als of up to 6th order are generally used at integrating.

380 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 17

Outp

R
2
/
8
.2

k
O

E
1
/
1
0
V

R
1
/
1
2
k
O

R3/1.5kO

C
2
/
0
.1

u
F

C
1
/
4
7
n
F

L
1
/
1
0
m

H
,3

O
h
m

Q1

Fig. 4. Colpitts oscillator used as a test of the ε-algorithm.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 22 88 171 182 126 108 697
2nd iter. 19 50 98 91 57 35 350
Extrapol. 41 138 269 273 183 143 1047

Classical 32 159 316 339 219 176 1241

Tab. 4. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration (polynomials of up to 6th order were again
used by the two methods) for the Colpitts oscillator.

The input language of used our original software tool C.I.A.
(Circuit Interactive Analyzer) contains a part fully compati-
ble with a subset of the Fortran 95 programming language.

The level kextpol of the extrapolation algorithm was 2,
of course, and only one iteration was necessary for finding
the steady state. Therefore, the computational effort of the
ε-algorithm was the same as that for the classical numerical
integration. Moreover, Tab. 3 clearly shows that the 5th and
6th orders were mainly used, which is typical for this circuit.

4.2 Colpitts Oscillator

The second tested circuit was the standard Colpitts os-
cillator in Fig. 4 with the results of the comparison of the ε-
algorithm with the classical numerical integration in Tab. 4.

The level kextpol of the extrapolation algorithm was 3,
and the fast decaying transients were filtered by ∆textpol =
0.125 ms. As shown, 1241 and 1047 integration steps were
necessary in the cases of the classical numerical integration
and the ε-algorithm, respectively, which indicates a moder-
ate improvement with usage of the extrapolation method.

4.3 Fragment of a Large Switched Circuit

The third tested circuit was a small fragment of a large
switched circuit in Fig. 5 with the results in Tab. 5. The level
kextpol of the extrapolation algorithm was estimated to 3 too.

Observed

E3/5V

Q
4
/
3
x
n
1

F2/pulse(1u,.1u,0.9u,.1u,20u,10.1u,9.9u)

F
1
/
p
u
ls
e
(t

,1
u
,.
1
u
,9

.9
u
,.
1
u
,2

0
u
,9

.9
u
,1

0
.1

u
)

R
3
/
4
0
k
O

Q3/n1

C1/10nF

Q2/n1
Q1/n1

R2/30MOR1/30MO

Fig. 5. Fragment of a large switched circuit. (ON Semicond.)

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 169 133 53 4 0 0 359
2nd iter. 175 149 51 35 34 9 453
3rd iter. 70 49 36 25 13 5 198
Extrapol. 414 331 140 64 47 14 1010

Classical 1545 1278 414 33 1 0 3271

Tab. 5. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the fragment of a large switched circuit.

The two current sources are defined by the Fortran 95 subset:

function pulse(

- time, delay,

- rise, width, fall,

- period, v1, v2)

implicit real*10 (a-z)

t = time

do while (t > period)

t = t - period

end do

t1 = delay

t2 = t1 + rise

t3 = t2 + width

t4 = t3 + fall

if (t <= t1.or.t >= t4) then

pulse = v1

else if (t <= t2) then

pulse = v1 + (t - t1) / (t2 - t1) *

/ (v2 - v1)

else if (t <= t3) then

pulse = v2

else

pulse = v2 + (t - t3) / (t4 - t3) *

/ (v1 - v2)

end if

end

Fig. 4. Colpitts oscillator used as a test of the ε-algorithm.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 22 88 171 182 126 108 697
2nd iter. 19 50 98 91 57 35 350
Extrapol. 41 138 269 273 183 143 1047

Classical 32 159 316 339 219 176 1241

Tab. 4. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration (polynomials of up to 6th order were again
used by the two methods) for the Colpitts oscillator.

The input language of used our original software tool C.I.A.
(Circuit Interactive Analyzer) contains a part fully compati-
ble with a subset of the Fortran 95 programming language.

The level kextpol of the extrapolation algorithm was 2,
of course, and only one iteration was necessary for finding
the steady state. Therefore, the computational effort of the
ε-algorithm was the same as that for the classical numerical
integration. Moreover, Tab. 3 clearly shows that the 5th and
6th orders were mainly used, which is typical for this circuit.

4.2 Colpitts Oscillator

The second tested circuit was the standard Colpitts os-
cillator in Fig. 4 with the results of the comparison of the ε-
algorithm with the classical numerical integration in Tab. 4.

The level kextpol of the extrapolation algorithm was 3,
and the fast decaying transients were filtered by ∆textpol =
0.125 ms. As shown, 1241 and 1047 integration steps were
necessary in the cases of the classical numerical integration
and the ε-algorithm, respectively, which indicates a moder-
ate improvement with usage of the extrapolation method.

4.3 Fragment of a Large Switched Circuit

The third tested circuit was a small fragment of a large
switched circuit in Fig. 5 with the results in Tab. 5. The level
kextpol of the extrapolation algorithm was estimated to 3 too.

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 17

Outp

R
2
/
8
.2

k
O

E
1
/
1
0
V

R
1
/
1
2
k
O

R3/1.5kO

C
2
/
0
.1

u
F

C
1
/
4
7
n
F

L
1
/
1
0
m

H
,3

O
h
m

Q1

Fig. 4. Colpitts oscillator used as a test of the ε-algorithm.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 22 88 171 182 126 108 697
2nd iter. 19 50 98 91 57 35 350
Extrapol. 41 138 269 273 183 143 1047

Classical 32 159 316 339 219 176 1241

Tab. 4. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration (polynomials of up to 6th order were again
used by the two methods) for the Colpitts oscillator.

The input language of used our original software tool C.I.A.
(Circuit Interactive Analyzer) contains a part fully compati-
ble with a subset of the Fortran 95 programming language.

The level kextpol of the extrapolation algorithm was 2,
of course, and only one iteration was necessary for finding
the steady state. Therefore, the computational effort of the
ε-algorithm was the same as that for the classical numerical
integration. Moreover, Tab. 3 clearly shows that the 5th and
6th orders were mainly used, which is typical for this circuit.

4.2 Colpitts Oscillator

The second tested circuit was the standard Colpitts os-
cillator in Fig. 4 with the results of the comparison of the ε-
algorithm with the classical numerical integration in Tab. 4.

The level kextpol of the extrapolation algorithm was 3,
and the fast decaying transients were filtered by ∆textpol =
0.125 ms. As shown, 1241 and 1047 integration steps were
necessary in the cases of the classical numerical integration
and the ε-algorithm, respectively, which indicates a moder-
ate improvement with usage of the extrapolation method.

4.3 Fragment of a Large Switched Circuit

The third tested circuit was a small fragment of a large
switched circuit in Fig. 5 with the results in Tab. 5. The level
kextpol of the extrapolation algorithm was estimated to 3 too.

Observed

E3/5V

Q
4
/
3
x
n
1

F2/pulse(1u,.1u,0.9u,.1u,20u,10.1u,9.9u)

F
1
/
p
u
ls
e
(t

,1
u
,.
1
u
,9

.9
u
,.
1
u
,2

0
u
,9

.9
u
,1

0
.1

u
)

R
3
/
4
0
k
O

Q3/n1

C1/10nF

Q2/n1
Q1/n1

R2/30MOR1/30MO

Fig. 5. Fragment of a large switched circuit. (ON Semicond.)

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 169 133 53 4 0 0 359
2nd iter. 175 149 51 35 34 9 453
3rd iter. 70 49 36 25 13 5 198
Extrapol. 414 331 140 64 47 14 1010

Classical 1545 1278 414 33 1 0 3271

Tab. 5. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the fragment of a large switched circuit.

The two current sources are defined by the Fortran 95 subset:

function pulse(

- time, delay,

- rise, width, fall,

- period, v1, v2)

implicit real*10 (a-z)

t = time

do while (t > period)

t = t - period

end do

t1 = delay

t2 = t1 + rise

t3 = t2 + width

t4 = t3 + fall

if (t <= t1.or.t >= t4) then

pulse = v1

else if (t <= t2) then

pulse = v1 + (t - t1) / (t2 - t1) *

/ (v2 - v1)

else if (t <= t3) then

pulse = v2

else

pulse = v2 + (t - t3) / (t4 - t3) *

/ (v1 - v2)

end if

end

Fig. 5. Fragment of a large switched circuit. (ON Semicond.)

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 169 133 53 4 0 0 359
2nd iter. 175 149 51 35 34 9 453
3rd iter. 70 49 36 25 13 5 198
Extrapol. 414 331 140 64 47 14 1010

Classical 1545 1278 414 33 1 0 3271

Tab. 5. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the fragment of a large switched circuit.

The two current sources are defined by the Fortran 95 subset:

function pulse(

- time, delay,

- rise, width, fall,

- period, v1, v2)

implicit real*10 (a-z)

t = time

do while (t > period)

t = t - period

end do

t1 = delay

t2 = t1 + rise

t3 = t2 + width

t4 = t3 + fall

if (t <= t1.or.t >= t4) then

pulse = v1

else if (t <= t2) then

pulse = v1 + (t - t1) / (t2 - t1) *

/ (v2 - v1)

else if (t <= t3) then

pulse = v2

else

pulse = v2 + (t - t3) / (t4 - t3) *

/ (v1 - v2)

end if

end

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 381
18 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

E2/5
L9/10uH,1ohm

Feedback

Delay to Gate Delay to DrainGaAs FET Macromodel

64

5

R1/50

R4/3

R2/4

R
5
/
1
6
6
.6

6
7

R3/4

E1/-0.4
L10/10uH,1ohm

3

C
7
/
0
.0

7
0
7
3
5
5
p
F

L8/1.5nHC6/10pF
C
1
/
0
.2

8
p
F

L2/0.35nHL1/0.35nH

C
2
/
0
.2

8
p
F

L4/0.35nHL3/0.35nH

C
5
/
0
.0

2
p
F

C
4
/
0
.0

2
p
F

L
7
/
0
.0

5
n
H

L6/0.03nHL5/0.03nH C3/0.01pF

d
s

G1/1umx400um

Fig. 6. Feedback microwave oscillator used for comparison of the extrapolation algorithm and classical implicit numerical integration.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 25 285 877 1023 778 723 3711
2nd iter. 4 84 318 723 1611 3179 5919
Extrapol. 29 369 1195 1746 2389 3902 9630

Classical 29 424 1573 3047 7558 16183 28814

Tab. 6. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the feedback microwave oscillator.

Let us emphasize that the usage of the subset of Fortran 95
language by the C.I.A. own input compiler enables possible
characterization of a practically arbitrary dynamic system.
The comparison in Tab. 5 also shows clearly that the extrapo-
lation algorithm is approximately three times better than the
classical numerical integration. Note that the bipolar junc-
tion transistors were modeled according to the standard [14].

4.4 Feedback Microwave Oscillator

The fourth tested circuit was the feedback microwave
oscillator in Fig. 6 [15] with the results of the comparison
in Tab. 6. The ε-algorithm parameters were kextpol = 2 and
∆textpol = 0.25 ns. As shown, 28814 and 9630 integration
steps were necessary in the cases of the classical numerical
integration and the ε-algorithm, respectively. (3:1, as well!)

4.5 Distributed Microwave Oscillator

The fifth tested circuit was the tunable distributed mi-
crowave oscillator in Fig. 9 [16] with the complicated tran-
sient in Fig. 7, and an automatically detected period in Fig. 8.

0 2.5E-9 5E-9 7.5E-9 1E-8 1.25E-8 1.5E-8 1.75E-8 2E-8

-1.5

-1

-.5

0

.5

1

1.5

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 7. Long transient of distributed microwave oscillator.

0 .05E-9 .1E-9 .15E-9 .2E-9 .25E-9 .3E-9 .35E-9

-1.5

-1

-.5

0

.5

1

1.5
Period=.3094E-9s

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 8. Detected period of distributed microwave oscillator.

Fig. 6. Feedback microwave oscillator used for comparison of the extrapolation algorithm and classical implicit numerical integration.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 25 285 877 1023 778 723 3711
2nd iter. 4 84 318 723 1611 3179 5919
Extrapol. 29 369 1195 1746 2389 3902 9630

Classical 29 424 1573 3047 7558 16183 28814

Tab. 6. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the feedback microwave oscillator.

Let us emphasize that the usage of the subset of Fortran 95
language by the C.I.A. own input compiler enables possible
characterization of a practically arbitrary dynamic system.
The comparison in Tab. 5 also shows clearly that the extrapo-
lation algorithm is approximately three times better than the
classical numerical integration. Note that the bipolar junc-
tion transistors were modeled according to the standard [14].

4.4 Feedback Microwave Oscillator

The fourth tested circuit was the feedback microwave
oscillator in Fig. 6 [15] with the results of the comparison
in Tab. 6. The ε-algorithm parameters were kextpol = 2 and
∆textpol = 0.25 ns. As shown, 28814 and 9630 integration
steps were necessary in the cases of the classical numerical
integration and the ε-algorithm, respectively. (3:1, as well!)

4.5 Distributed Microwave Oscillator

The fifth tested circuit was the tunable distributed mi-
crowave oscillator in Fig. 9 [16] with the complicated tran-
sient in Fig. 7, and an automatically detected period in Fig. 8.

18 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

E2/5
L9/10uH,1ohm

Feedback

Delay to Gate Delay to DrainGaAs FET Macromodel

64

5

R1/50

R4/3

R2/4

R
5
/
1
6
6
.6

6
7

R3/4

E1/-0.4
L10/10uH,1ohm

3

C
7
/
0
.0

7
0
7
3
5
5
p
F

L8/1.5nHC6/10pF
C
1
/
0
.2

8
p
F

L2/0.35nHL1/0.35nH

C
2
/
0
.2

8
p
F

L4/0.35nHL3/0.35nH

C
5
/
0
.0

2
p
F

C
4
/
0
.0

2
p
F

L
7
/
0
.0

5
n
H

L6/0.03nHL5/0.03nH C3/0.01pF

d
s

G1/1umx400um

Fig. 6. Feedback microwave oscillator used for comparison of the extrapolation algorithm and classical implicit numerical integration.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 25 285 877 1023 778 723 3711
2nd iter. 4 84 318 723 1611 3179 5919
Extrapol. 29 369 1195 1746 2389 3902 9630

Classical 29 424 1573 3047 7558 16183 28814

Tab. 6. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the feedback microwave oscillator.

Let us emphasize that the usage of the subset of Fortran 95
language by the C.I.A. own input compiler enables possible
characterization of a practically arbitrary dynamic system.
The comparison in Tab. 5 also shows clearly that the extrapo-
lation algorithm is approximately three times better than the
classical numerical integration. Note that the bipolar junc-
tion transistors were modeled according to the standard [14].

4.4 Feedback Microwave Oscillator

The fourth tested circuit was the feedback microwave
oscillator in Fig. 6 [15] with the results of the comparison
in Tab. 6. The ε-algorithm parameters were kextpol = 2 and
∆textpol = 0.25 ns. As shown, 28814 and 9630 integration
steps were necessary in the cases of the classical numerical
integration and the ε-algorithm, respectively. (3:1, as well!)

4.5 Distributed Microwave Oscillator

The fifth tested circuit was the tunable distributed mi-
crowave oscillator in Fig. 9 [16] with the complicated tran-
sient in Fig. 7, and an automatically detected period in Fig. 8.

0 2.5E-9 5E-9 7.5E-9 1E-8 1.25E-8 1.5E-8 1.75E-8 2E-8

-1.5

-1

-.5

0

.5

1

1.5

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 7. Long transient of distributed microwave oscillator.

0 .05E-9 .1E-9 .15E-9 .2E-9 .25E-9 .3E-9 .35E-9

-1.5

-1

-.5

0

.5

1

1.5
Period=.3094E-9s

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 8. Detected period of distributed microwave oscillator.

Fig. 7. Long transient of distributed microwave oscillator.

18 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

E2/5
L9/10uH,1ohm

Feedback

Delay to Gate Delay to DrainGaAs FET Macromodel

64

5

R1/50

R4/3

R2/4

R
5
/
1
6
6
.6

6
7

R3/4

E1/-0.4
L10/10uH,1ohm

3

C
7
/
0
.0

7
0
7
3
5
5
p
F

L8/1.5nHC6/10pF
C
1
/
0
.2

8
p
F

L2/0.35nHL1/0.35nH

C
2
/
0
.2

8
p
F

L4/0.35nHL3/0.35nH

C
5
/
0
.0

2
p
F

C
4
/
0
.0

2
p
F

L
7
/
0
.0

5
n
H

L6/0.03nHL5/0.03nH C3/0.01pF

d
s

G1/1umx400um

Fig. 6. Feedback microwave oscillator used for comparison of the extrapolation algorithm and classical implicit numerical integration.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 25 285 877 1023 778 723 3711
2nd iter. 4 84 318 723 1611 3179 5919
Extrapol. 29 369 1195 1746 2389 3902 9630

Classical 29 424 1573 3047 7558 16183 28814

Tab. 6. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the feedback microwave oscillator.

Let us emphasize that the usage of the subset of Fortran 95
language by the C.I.A. own input compiler enables possible
characterization of a practically arbitrary dynamic system.
The comparison in Tab. 5 also shows clearly that the extrapo-
lation algorithm is approximately three times better than the
classical numerical integration. Note that the bipolar junc-
tion transistors were modeled according to the standard [14].

4.4 Feedback Microwave Oscillator

The fourth tested circuit was the feedback microwave
oscillator in Fig. 6 [15] with the results of the comparison
in Tab. 6. The ε-algorithm parameters were kextpol = 2 and
∆textpol = 0.25 ns. As shown, 28814 and 9630 integration
steps were necessary in the cases of the classical numerical
integration and the ε-algorithm, respectively. (3:1, as well!)

4.5 Distributed Microwave Oscillator

The fifth tested circuit was the tunable distributed mi-
crowave oscillator in Fig. 9 [16] with the complicated tran-
sient in Fig. 7, and an automatically detected period in Fig. 8.

0 2.5E-9 5E-9 7.5E-9 1E-8 1.25E-8 1.5E-8 1.75E-8 2E-8

-1.5

-1

-.5

0

.5

1

1.5

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 7. Long transient of distributed microwave oscillator.

0 .05E-9 .1E-9 .15E-9 .2E-9 .25E-9 .3E-9 .35E-9

-1.5

-1

-.5

0

.5

1

1.5
Period=.3094E-9s

Time(s)

V
o
lt

a
g
e(

O
u
tp

)(
V

)

Fig. 8. Detected period of distributed microwave oscillator.Fig. 8. Detected period of distributed microwave oscillator.

382 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 19

trlO

trlO

trl18

tr
l1

7

trl16

trl15

tr
l1

4

trl13

trl12trl11

2xtrl9 trl8

trl7

trl6

trl5trl4

trl3trl2
2
xt

rl
1
0

tr
l1

5.1k5.1k5.1k5.1k

50

50

Vds/2.5

Outp

100p

1
0
0
p

20n

100p

20n

w=1.5,l=10

w=1.5,l=10

w=0.3,l=0.3

w
=

0
.0

5
,l
=

1
2

w
=

2
,l
=

2
.5

w
=

0
.4

5
,l
=

2
.9

w=0.4,l=1.5w=0.14,l=4

w=2,l=1.5w=0.1,l=4

1p

w
=

0
.6

7
,l
=

1
.8

1p

Vgs3=-3

100p

d
s

atf35376

w
=

0
.1

,l
=

1
.8

20p

1p

w=0.33,l=8

w=0.36,l=8

w=0.37,l=8

w
=

0
.8

,l
=

1
.8

Vgs2=-3

d
s

atf35376

100p

0.5p

w
=

0
.8

5
,l
=

1
.8

Vgs12=-3

100p

w=0.27,l=8

2x20p

0.5p

w
=

0
.8

5
,l
=

1
.8

w
=

0
.8

5
,l
=

1
.8

w
=

0
.8

5
,l
=

1
.8

d
s

Vgs11=-0.3
100p

1p

20p

w
=

0
.1

,l
=

1
.8

d
s

2xatf35376

w
=

0
.6

,l
=

8

Fig. 9. Tunable distributed microwave oscillator as a sophisticated test of accelerating convergence by the steady-state algorithm. The
line dimensions are in millimeters, and the line models are defined by the circuit diagram in Fig. 10 with the parameters in Tab. 9.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 10 42 166 512 1893 9931 12554
2nd iter. 3 2 24 419 2258 11454 14160
3rd iter. 3 2 21 463 2467 11256 14212
4th iter. 3 2 28 430 2078 8827 11368
Extrapol. 19 48 239 1824 8696 41468 52294

Classical 10 38 254 3631 20172 94829 118934

Tab. 7. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the tunable microwave oscillator, the case
kextpol = 15, ∆textpol = 5 ns, and jmax1 = 100.

As the transient of this circuit is extraordinarily complicated,
two tests have been performed — the first and second with
kextpol = 15 and 20, respectively. Furthermore, the delays
∆textpol = 5 and 3 ns have been chosen, and the maxi-
mum numbers of iterations within a single integration step
jmax1 = 100 and 500 have been selected, respectively. The
results of the two experiments are summarized in Tab. 7 and
Tab. 8. As shown, 4 and 5 iterations of the ε-algorithm have
been needed with necessary total numbers of the integration
steps 52294 and 66869, respectively. Therefore, the neces-
sity of total numbers of integration steps is about twice lesser
for the ε-algorithm than that for the numerical integration.

Note that the transmission lines always enforce large
numbers of the integration steps due to their classical LCRG

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 8 29 127 534 2066 10678 13442
2nd iter. 3 2 12 333 2286 12566 15202
3rd iter. 3 2 8 405 2384 12488 15290
4th iter. 3 2 7 409 2399 12470 15290
5th iter. 3 2 7 188 1217 6228 7645
Extrapol. 20 37 161 1869 10352 54430 66869

Classical 8 29 210 3233 19234 97172 119886

Tab. 8. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the tunable microwave oscillator, the case
kextpol = 20, ∆textpol = 3 ns, and jmax1 = 500.

models, which is clearly shown in Tabs. 7 and 8. However,
contemporary models of the transmission lines could be even
more demanding; approximations based both on semidis-
cretization of telegrapher’s equations [17, 18] and second-
order Bessel functions [19] are comparably time-consuming.
Hence, the gain given by the steady-state algorithm is useful.

The automatically detected period 0.3094 ns was deter-
mined with the amplitude of the output about 1 V — a mea-
sured period for similar gate voltages [16] was 0.333 ns with
the output level at about 11 dBm, which agrees quite well.

The atf35376 2–18 GHz low noise pseudomorphic
HEMT has been characterized by the model [20] — its accu-
racy comparison with other ones has been performed in [21].

Fig. 9. Tunable distributed microwave oscillator as a sophisticated test of accelerating convergence by the steady-state algorithm. The
line dimensions are in millimeters, and the line models are defined by the circuit diagram in Fig. 10 with the parameters in Tab. 9.

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 10 42 166 512 1893 9931 12554
2nd iter. 3 2 24 419 2258 11454 14160
3rd iter. 3 2 21 463 2467 11256 14212
4th iter. 3 2 28 430 2078 8827 11368
Extrapol. 19 48 239 1824 8696 41468 52294

Classical 10 38 254 3631 20172 94829 118934

Tab. 7. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the tunable microwave oscillator, the case
kextpol = 15, ∆textpol = 5 ns, and jmax1 = 100.

As the transient of this circuit is extraordinarily complicated,
two tests have been performed — the first and second with
kextpol = 15 and 20, respectively. Furthermore, the delays
∆textpol = 5 and 3 ns have been chosen, and the maxi-
mum numbers of iterations within a single integration step
jmax1 = 100 and 500 have been selected, respectively. The
results of the two experiments are summarized in Tab. 7 and
Tab. 8. As shown, 4 and 5 iterations of the ε-algorithm have
been needed with necessary total numbers of the integration
steps 52294 and 66869, respectively. Therefore, the neces-
sity of total numbers of integration steps is about twice lesser
for the ε-algorithm than that for the numerical integration.

Note that the transmission lines always enforce large
numbers of the integration steps due to their classical LCRG

Utilized Numbers of integration steps for numerical integration
method 1st 2nd 3rd 4th 5th 6th Total

1st iter. 8 29 127 534 2066 10678 13442
2nd iter. 3 2 12 333 2286 12566 15202
3rd iter. 3 2 8 405 2384 12488 15290
4th iter. 3 2 7 409 2399 12470 15290
5th iter. 3 2 7 188 1217 6228 7645
Extrapol. 20 37 161 1869 10352 54430 66869

Classical 8 29 210 3233 19234 97172 119886

Tab. 8. Comparison of the numbers of integration steps in the
extrapolation algorithm and classical numerical inte-
gration for the tunable microwave oscillator, the case
kextpol = 20, ∆textpol = 3 ns, and jmax1 = 500.

models, which is clearly shown in Tabs. 7 and 8. However,
contemporary models of the transmission lines could be even
more demanding; approximations based both on semidis-
cretization of telegrapher’s equations [17], [18] and second-
order Bessel functions [19] are comparably time-consuming.
Hence, the gain given by the steady-state algorithm is useful.

The automatically detected period 0.3094 ns was deter-
mined with the amplitude of the output about 1 V – a mea-
sured period for similar gate voltages [16] was 0.333 ns with
the output level at about 11 dBm, which agrees quite well.

The atf35376 2–18 GHz low noise pseudomorphic
HEMT has been characterized by the model [20] – its accu-
racy comparison with other ones has been performed in [21].

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 383

5 2 5 2/ 2 / 2

Fig. 10. Standard LCRG model of the lossy transmission lines. The model is not dispersive, i.e., the L, C, R, and G parameters are not
a function of frequency, and the TEM propagation mode is assumed.

Trans. No. of L C R 1/G
line sections (pH) (fF) (Ω) (Ω)

trl1 6 509.506 72.037 0.1614 43828
trl2 6 691.5 51.125 0.2232 60608.8
trl3 6 621.07 57.643 0.1992 54094.5
trl4 6 618.677 57.866 0.1984 53886.1
trl5 6 643.059 55.439 0.2067 56127
trl6 3 844.8 40.741 0.2763 75045.7
trl7 3 908.379 37.567 0.2984 81038.9
trl8 1 824.15 34.084 0.3581 67532.7
trl9 1 384.06 80.202 0.1593 30053.2
trl10 2 284.585 59.429 0.0797 60106.3
trl11 2 296.511 57.039 0.083 62625.2
trl12 2 322.095 51.872 0.0907 68444.7
trl13 1 661.5 68.878 0.2257 42560.8
trl14 2 617.385 68.697 0.191 47052.6
trl15 2 239.456 145.988 0.0816 20101.6
trl16 2 143.775 87.654 0.0466 35177.8
trl17 10 933.887 28.76 0.4149 78253
trl18 1 153.63 11.863 0.0655 197690.8
trlO 8 250 100 0.0792 31584.2

Tab. 9. Numbers of sections, inductances, capacitances, resis-
tances, and conductances per unit length of the models
of the transmission lines.

The atf35376 model parameters were adjusted using an aux-
iliary simple extraction process to the values VT0 = −1 V,
β = 0.08 A V−2, n2 = 2, λ = 0.0015 V−1, α = 2 V−1,
σ = 0.002, rD = 0.62 Ω, rS = 1.38 Ω, rG = 0.98 Ω,
εW = 5 fF, CGD0 = 0.05 pF, CGS0 = 0.3 pF, φ0 = 1 V,
CDS = 0.2 pF, andm = 0.5; all were set for the model [20].

Note that used model [20] is noticeably simpler than
those with precise higher-order derivatives like [22], which
are appropriate for analyzing mixers. However, the com-
parison [21] confirmed that its precision is fully sufficient,
especially for analyzing amplifiers and oscillators.

4.6 Optimized C-Class LDMOS Amplifier

The examples solved above demonstrated that the typ-
ical acceleration of the extrapolation algorithm is about two
to three times. This is useful for more complicated circuits
but maybe not decisive if fast multicore computers are used.
However, when finding the steady state is necessary as a part
of an optimization process, this acceleration is fundamental.
It can be clearly demonstrated by the multiobjective opti-
mization of the last stage of an RF power amplifier in Fig. 11,

VInp
VBias

VDDZgen

ZL

M1

C1

C2 C3

L1

L2

Inp

Outp

Fig. 11. C-class amplifier with optimized steady-state period.

which serves for a narrow-band signal with an analog modu-
lation at the frequency f1 = 300 MHz. The source and load
impedances are both 50 Ω, and the supply voltage VDD is
12 V. The goal is to explore the tradeoffs between achievable
output power, power efficiency and total harmonic distortion.
We use the lp821 LDMOS transistor as an active compo-
nent and a topology typical for the C-class mode of opera-
tion. The transistor is followed by an LC filter to suppress
harmonic distortion and provide good impedance matching.
The combination of the elements L1, C1, and C2 can also be
seen as a tapped resonant circuit.

A detailed technical definition of the circuit, including
a comprehensive RF LDMOS model was described in [23]
as well as a steady-state period found for selected solution on
the Pareto front. However, the behavior of used ε-algorithm
operating inside the optimization was not discussed in [23].

The first reason why we mention this circuit is extreme
laboriousness, which was necessary for a total of 84 obtained
solutions covering the three-dimensional Pareto front [23].
Even on a fast eight-core computer, creating the set of non-
inferior solutions on the Pareto front necessitated hours of
computing. Therefore, the acceleration of finding the steady
states inside the optimization loops was fundamental here.

The second reason why this task should be mentioned
is a question of the stability of the numerical integration. In
fact, there is a hierarchy of three iterative processes here: op-
timization, steady-state algorithm, and numerical integration
that can cause difficultly predictable states inside iterations.
As a consequence, the interpolation order determined by the
application of (14) had to be limited by a lesser number than
six for successful obtaining some points of the Pareto front.
In other words, the theoretical limit six derived in [8] cannot
be kept generally if the state-state algorithm is controlled by
an optimization. This is an interesting and important finding.

384 J. DOBEŠ, V. BIOLKOVÁ, RELIABLE AND EFFICIENT PROCEDURE FOR STEADY-STATE ANALYSIS...

5. Conclusion
Two possible add-ons have been suggested for the algo-

rithm for the implicit numerical integration, which are able
to determine the steady state of both nonautonomous and au-
tonomous circuits. A finally preferred method uses an ex-
trapolation technique based on the scalar ε-algorithm. For
determining unknown periods of autonomous circuits, the
method works as a Newton-Raphson-like one using the abil-
ity of the improved numerical integration algorithm to deter-
mine the derivatives of a circuit output with respect to time
at any point. The procedure has been checked on a large
number of nonautonomous and autonomous circuits, and six
of them — the Van der Pol and Colpitts oscillators, frag-
ment of a large switched circuit, feedback and distributed
microwave oscillators, and optimized C-class RF power am-
plifier with LDMOS — have been demonstrated in a detailed
way. The convergence of the ε-algorithm is unproblematic in
most cases because the method is relatively insensitive to the
control parameters. The accuracy is also not a problem be-
cause the algorithm has proven to return to the very similar
value after a period-long integration.

Acknowledgements
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme (FP7/2007–2013) under the grant agreement no.
230126. The practical works were performed in laborato-
ries supported by the SIX project; the registration number
CZ.1.05/2.1.00/03.0072, the operational program Research
and Development for Innovation. The paper has also been
supported by the Grant Agency of the Czech Republic, grant
no. P102/10/1665, and by the internal grants of the Czech
Technical University in Prague SGS 10/286/OHK3/3T/13,
SGS 11/160/OHK3/3T/13, and SGS 12/151/OHK3/2T/13.

References

[1] ROBERTS, W. G., SEDRA, A. S. SPICE. Second Edition. New-York
(USA): Oxford University Press, 1997.

[2] Affirma RF Simulator User Guide, v. 4.4.6. Technical Report. San
Jose (California): Cadence Design Systems, April 2001.

[3] Micro-Cap 10 2010 Circuit Simulation Newsletter. Technical Report.
Sunnyvale (CA, USA): Spectrum Software, June 2010.

[4] BRENAN, K. E., CAMPBELL, S. L., PETZOLD, L. R. Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equa-
tions. Philadelphia (PA, USA): SIAM, 1996.

[5] SHAMPINE, L. F. Numerical Solution of Ordinary Differential
Equations. New Edition. New York (USA): Chapman & Hall, 2011.

[6] ZHOU, Y., GAD, E., NAKHLA, M. S., ACHAR, R. Structural
characterization and efficient implementation technique for A-Stable
High-Order Integration Methods. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2012, vol. 31, no. 1,
p. 101–108.

[7] DOBEŠ, J., YADAV, A., ČERNÝ, D. Efficient algorithm for solv-
ing systems of circuit differential-algebraic equations with reliable
divergence suppression in DC and time domains. In Proceedings of
the 54th Midwest Symposium on Circuits and Systems. Seoul (Korea),
2011, 4 p., wos:000296057200325.

[8] PETRENKO, A. I., VLASOV, A. I., TIMTSCHENKO, A. P.
Tabular Methods of Computer-Aided Modeling. (In Russian.) Kiyv
(Ukraine): Higher School, 1977.

[9] DOBEŠ, J. Advanced types of the sensitivity analysis in fre-
quency and time domains. AEÜ—International Journal of Elec-
tronics and Communications, 2009, vol. 63, no. 1, p. 52–64, wos:
000263477800008.

[10] ENGELN-MÜLLGES, G., UHLIG, F. Numerical Algorithms with C.
Berlin (Germany): Springer-Verlag, 1996.

[11] VLACH, J., SINGHAL, K. Computer Methods for Circuit Analysis
and Design. New York (USA): Van Nostrand Reinhold Company,
1982.

[12] SKELBOE, S. Computation of the periodic steady-state response of
non-linear networks by extrapolation methods. IEEE Transactions
on Circuits and Systems, 1980, vol. 27, no. 3, p. 161–175, wos:
a1980jn39700001.

[13] SKELBOE, S. Time-domain steady-state analysis of non-linear elec-
trical systems. Proceedings of the IEEE, 1982, vol. 70, no. 10,
p. 1210–1228, wos:a1982pq55400004.

[14] MASSOBRIO, G., ANTOGNETTI, P. Semiconductor Device Mod-
eling With SPICE. 2nd ed. New York (USA): McGraw-Hill, 1993.

[15] TAJIMA, Y., WRONA, B., MISHIMA, K. GaAs FET large-signal
model and its application to circuit designs. IEEE Transactions
on Electron Devices, 1981, vol. ED-28, no. 2, p. 171–175, wos:
a1981kz60700008.

[16] DIVINA, L., ŠKVOR, Z. The distributed oscillator at 4 GHz, IEEE
Transactions on Microwave Theory and Techniques, 1998, vol. 46,
no. 12, p. 2240–2243, wos:000078099000009.

[17] GUO, Y.-S. Transient analysis of transmission line circuits based on
the semidiscretization of telegraph equations. Journal of Electronics,
2001, vol. 18, no. 1, p. 46–55.

[18] GUO, Y.-S. Transient simulation of high-speed interconnects based
on the semidiscretization of telegrapher’s equations. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
2002, vol. 21, no. 7, p. 799–809, wos:000176508500005.

[19] DOBEŠ, J., SLÁMA, L. A modified Branin model of lossless trans-
mission lines. In Proceedings of the 52nd Midwest Symposium on
Circuits and Systems. Cancun (Mexico), 2009, p. 236–239, wos:
000277574000059.

[20] DOBEŠ, J., POSPÍŠIL, L. Enhancing the accuracy of microwave ele-
ment models by artificial neural networks, Radioengineering, 2004,
vol. 13, no. 3, p. 7–12, wos:000208050000002.

[21] MEMON, N. M., AHMED, M. M., REHMAN, F. A comprehensive
four parameters I–V model for GaAs MESFET output characteris-
tics. Solid-State Electronics, 2007, vol. 51, no. 3, p. 511–516, wos:
000246313400027.

[22] PARKER, A. E., SKELLERN, D. J. A realistic large-signal MES-
FET model for SPICE. IEEE Transactions on Microwave The-
ory and Techniques, 1997, vol. 45, no. 9, p. 1563–1571, wos:
a1997xu75500004.

[23] DOBEŠ, J., MÍCHAL, J., PAŇKO, V., POSPÍŠIL, L. Reliable
procedure for electrical characterization of MOS-based devices,
Solid-State Electronics, 2010, vol. 54, no. 10, p. 1173–1184, wos:
000281019100022.

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 385

About Authors . . .

Josef DOBEŠ received the Ph.D. degree in microelectron-
ics at the Czech Technical University in Prague in 1986.
From 1986 to 1992, he was a researcher of the TESLA Re-
search Institute, where he performed analyses on algorithms
for CMOS Technology Simulators. Currently, he works at
the Department of Radio Electronics of the Czech Tech-
nical University in Prague. His research interests include
the physical modeling of radio electronic circuit elements,
especially RF and microwave transistors and transmission
lines, creating or improving special algorithms for the cir-
cuit analysis and optimization, such as time- and frequency-

domain sensitivity, poles-zeros or steady-state analyses, and
creating a comprehensive CAD tool for the analysis and op-
timization of RF and microwave circuits.

Viera BIOLKOVÁ received her MSc degree in electrical
engineering from the Brno University of Technology, Czech
Republic, in 1983. She joined the Department of Radio Elec-
tronics in 1985 and is currently working as a research assis-
tant at the Department of Radio Electronics, Brno University
of Technology (BUT), Czech Republic. Her research and
educational interests include signal theory, analogue signal
processing and digital electronics.

