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Abstract. This paper proposes a quiet zone probing ap-
proach which deals with low dynamic range quiet zone 
acquisitions. Lack of dynamic range is a feature of milli-
meter and sub-millimeter wavelength technologies. It is 
consequence of the gradually smaller power generated by 
the instrumentation, that follows a f-α law with frequency, 
being α ≥ 1 variable depending on the signal source’s 
technology. The proposed approach is based on an optimal 
data reduction scenario which redounds in a maximum 
signal to noise ratio increase for the signal pattern, with 
minimum information losses. After theoretical formulation, 
practical applications of the technique are proposed. 
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1. Introduction 
Compact Antenna Test Ranges (CATRs) are antenna 

measurement facilities [1] which feature the inherent ad-
vantages of farfield test techniques while keeping the size 
of a nearfield chamber. This compactness requires electro-
magnetic field collimating optics that are able to handle the 
radiation pattern of the feed antenna so it is transformed 
into a plane wave distribution, existing within a volumetric 
region called “quiet zone”. 

Diverse elements of the facility contribute to the dis-
crepancy between the ideal case where the quiet zone is 
a locally plane wave distribution and the existing fields, in 
reality. In well designed CATRs, the main component of 
the quiet zone fields results from the collimation of the 
feeder’s emerging spherical wave towards the optics. 
While other spurious scattering sources may affect this 
collimated wave thus degrading the planarity of the quiet 
zone, the collimated wave itself relies on the performance 
of the optics. At lowest frequencies, the collimating capa-
bilities of the optics are decreased because the field scatter-

ers involved in the collimation process reduce their author-
ity over the propagating waves [2], as a consequence of its 
diminished electrical size. On the other hand, at highest 
frequencies the mechanical accuracies in the alignment of 
the optics [3] and the smoothness of their surfaces become 
critical and accordingly set bounds to the highest frequency 
at which the optics collimate the fields according to certain 
planarity criteria, expressed in terms of rms ripples both in 
magnitude and phase. 

Therefore, evaluation of the optics’ performance con-
stitutes the mainstream for the assessment of a CATR. It 
sets realistic limits to its best achievable quiet zone per-
formance besides the interference of extraneous disturbing 
sources, such as radiation absorbing material or signal’s 
multiple reflection patterns. The study can be performed at 
different levels: either theoretically with EM simulations of 
a virtual facility [4] or experimentally, performing quiet 
zone probing of an existing facility [5], [6]. While the first 
approach allows the flexible introduction of modifications 
in the facility so its behavior can be known in several sce-
narios (thus driving the conclusions extraction and eventu-
ally, optimization), [3] it always relies on simplifying 
hypothesis required for any algorithm [4], in addition with 
the fact that no matter how complete the simulation is, the 
calculations are not performed on the facility which actu-
ally exists. The quiet zone probing approach proves to be 
a powerful tool to get a clear idea of a range’s perform-
ance. When the probing process is performed in 2D scans 
(either Cartesian or polar), with several configurations of 
the feed / probe antennas and for different frequencies of 
interest, it is able to offer a very clear image of the quiet 
zone’s behavior. Both vector as well as complex informa-
tion is then extracted so cross-polar levels are known and 
the collimation capabilities are clearly described. 

At millimeter and sub-millimeter wavelength fre-
quencies, the use of quiet zone probing is seriously com-
promised by the time consumption resulting from the  f 2  
increasing required number of samples. Moreover, the 
dynamic range figure offered by the instrumentation de-
creases  f   with  ≥ 1 when moving towards the sub-
millimeter wavelength frequencies. Whenever SNR wants 
to be kept, a respective  f   decrease in the receiver’s 
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intermediate frequency bandwidth (IFBW) is mandatory 
thus increasing the acquisition time per sample  f  . In 
sum, a  f 2  increase of the required time resources is 
deduced for unitary 2D quiet zone acquisitions. These 
constraints may enforce reduction of the completeness in 
the acquisition campaigns either in terms of covered num-
ber of frequencies, feed-probe configurations or sampling 
domain extension. In practice, acquisition times are kept 
reasonable at the expense of shifting from 2D acquisitions 
towards 1D linear samplings in the main and diagonal cuts.  

Our approach here will be not to trade-off the com-
pleteness of the probing campaigns but to propose a data 
reduction scenario which considers the finite SNR figure at 
millimeter wavelengths with the purpose of reducing dra-
matically the required number of samples that contribute 
effectively to the SNR. Seen from a complementary point 
of view, the degrees of freedom associated to that number 
of complex samples determine the amount of plane wave 
spectral modes required to represent the maximum SNR 
version of the quiet zone fields. For a low-pass nature 
magnitude, such as the main contribution of the optics, it is 
equivalent to reach the cutoff frequency of the lowpass 
filter which maximizes the SNR of a quiet zone distribu-
tion. This maximization process might become a manda-
tory task whenever SNR-sensitive post-processing tech-
niques are applied to the quiet zone information. 

This paper is organized as follows: Section 2 pro-
poses a mathematical model of the finite SNR main contri-
bution to the quiet zone fields. Section 3 approaches the 
quiet zone probing issue proposing a feasible maximal 
SNR scheme, in practical terms. Section 4 focuses on 
a useful application of the technique and section 5 draws 
conclusions as well as future lines. 

2. Mathematical Model 

2.1 Noiseless Scenario 

In this non bounded dynamic range scenario, the sig-
nal of interest is the direct wave contribution to the quiet 
zone fields EQZ

(S) r  within a planar acquisition domain 

. The electrical noise contribu-

tion is assumed null EQZ
(N ) r   0 . EQZ

(S) r  results from the 

scattering of the reflector’s current distribution towards the 
acquisition plane [4]. Plane wave spectrum approach to 
EQZ

(S) r  [7] proposes its evaluation as the vector integra-

tion a of plane waves distribution E kx,ky   within the 

visible spectral domain , of low-

pass nature (1). In practice, the set of plane waves which 
are required to implement the coupling between sources 
and acquisition plane  

 is a subset of the 

visible domain:   [4], [6], whose definition 

depends on the geometry of the acquisition setup and the 
physical size of the optics [6]. Thus, no signal is expected 

on  yx,kkE
~  for spectral components   Rangeyx kk 

~
, . 

According to Fourier theory, a reduction in the extension 
of a lowpass spectral domain rewrites the Nyquist criterion 
allowing for larger distances between samples  in 

the transformed (spatial) domain without information 
losses about the main wave contribution, as in (2). 

  , (1) 

 .  (2) 

Thus, the propagation between the sources’ plane 
S  

and the acquisition plane A  induces a lowpass filtering 

on the source’s spectral distribution E kx,ky   in addition 

with a phase weighting e j ·k· rr '   which does not affect the 
spectral contributions’ magnitude. The sources’ spectral 
distribution E kx,ky   follows a diffractive pattern whose 

envelope decays as following a 
 

1
x/y

k  law [8]. In sum, the 

magnitude of the spectral distribution regarding the noise-

less quiet zone E(S)
QZ kx,ky   features a 

 

1
x/y

k  decaying pat-

tern within Range~ , being null outside. 

  (3) 

2.2 Finite Dynamic Range Scenario 

When the dynamic range available in the setup is fi-
nite and potentially low, the measured quiet zone results 
from the addition of a noise EQZ

(N ) r   contribution to the 

signal EQZ
(S) r  , as in (3). From the spectral point of view, 

spectral components kx,ky   Range
 may have a stronger 

contribution of noise than signal: 
EQZ
N  kx,ky   EQZ

S  kx,ky  . The consequence is SNR  

degradation in the measured quiet zone distribution. In this 
scenario with a finite dynamic range, EMeas kx,ky   can 

thus be modeled as the addition of the signal of interest 
 yx

)( k,k
~ S

AcqE  plus an uncorrelated noise contribution 

 yx
)( k,k

~ N
AcqE , as in (4). The magnitude of this noise 

)(N
Acq satisfies (5) and (6), where dr  is the dynamic range 
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offered by the setup, in natural units. Fig. 1 depicts 
a scenario for which EQZ

(S)  is nonzero for   0/ ·3.0 kk yx  . 

 EMeas kx,ky   EQZ
(S) kx,ky   EQZ

(N ) kx,ky  , (4) 

 EQZ
(N ) kx,ky    (N ) ·N1

0 kx,ky  , (5) 

  (N ) 
EQZ

(S) k  0 
dr

. (6) 

Thus, it is relevant to define a maximally compact 
spectral support    ySNRySNRxSNRxSNRSNR kkkk ,,,, ,,

~
  that 

ensures positive SNR in addition with the least severe loss 
of information, as in (7). It can be demonstrated that SNR

~  

converges to Range
~  in an infinite dynamic range, noiseless 

scenario. The considered spectral domains satisfy (8). 

 , (7) 

 0
~~~
 RangeSNR .  (8) 

The boundaries of SNR
~

 are kx  kSNR,x
, ky  kSNR,y

 

and can be approached either theoretically or experimen-
tally. In the first case, some assumptions should be taken 
about the source’s distribution  r'M  and reach a heuristic 

version of EQZ
(S) kx,ky  . For an ideal scheme,  r'M  con-

verges to a phase uniform, magnitude tapered distribution 

within the effective sources extension S
eff
S  , poten-

tially the main reflector’s non-serrated area. The serrations 
taper  r'M  towards 0. This sources distribution generates 

a diffractive low pass [9] pattern  yx
)( k,k

~ S
AcqE  for which 

the non-oscillating envelope decays following a 
 

1
x/y

k  law 

[8]. Being  
*

/, yxSNRk  the heuristic approach to  yxSNRk /, , 

it can be analytically deduced as in (9), which is used to 

draw the plot in Fig. 2, representing  
*

/, yxSNRk  as a func-

tion of the available dynamic range and frequency of 

operation.  
*

/, yxSNRk  must be seen as the lower bound for 

 yxSNRk /,  (10), given that it works under the assumption of 

ideal collimation scheme. In an experimental deduction of 

 yxSNRk /, , a two mid-resolution cuts in the horizontal and 

vertical dimensions should be performed to have a realistic 

image of the behavior in  yx k,k
~

AcqE , and thus know for 

which spectral components the SNR is positive. Both in the 
experimental and the theoretical approaches, the available 
dynamic range can be extracted from a time-domain plot of 
the S2,1 t   coupling between feed and probe along a radar 

distance which is able to cover the direct wave timeslot as 
well as time periods where no signal (either direct or stray) 
is expected 

 2

 · xS
  xS


· kSNR, x/y 

* 1

dr  0 ,   (9) 

    yxSNRyxSNR kk /,
*

/,  . (10) 

 
Fig. 1. Spectral distribution of a low dynamic range quiet 

zone acquisition. 
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Fig. 2. Theoretical approach to  
*

/, yxSNRk . 

3. Probing Setup: Implementation 
In this section, it is proposed a Cartesian grid probing 

technique which implements the SNR maximization ap-
proach to the quiet zone fields. The sampling must satisfy 

(9) proposing a maximally compact SNR
~

 domain. Ac-

cording to Fourier theory, the sampling distances  

for in the acquisition plane would satisfy (11). Being 
 the acquisition domain, the re-

quired number of samples in the x/y direction N x / y a  
follows (12). 

   (11) 
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 N x / y a 1 x / y a  x / y a · 2 ·dr . (12) 

The SNR increase in natural magnitude with respect 
to the most general version of the Nyquist sampling ap-
proach is the fraction between: the SNR achieved by the 
proposed technique, divided by the SNR figure drawn by 
Nyquist, as in (13). Equation (13) becomes (14) when the 

definition of SNR
~

 fulfills the sampling approach of (11). 

The corresponding SNR increase in dB follows (15).   

 

  (13) 

 

(14) 

 . (15) 

A priori knowledge of the EQZ
(S) kx,ky   pattern would 

lead to an optimal SNR
~

 which reaches the maximum 

. At this point, the collimated phase hypothesis is 
not able to contribute to this task, given that it is too sim-
plifying to be considered to integrate the spectral contribu-
tions of EQZ

(S) kx,ky   within a certain domain. 

4. Application 
After performing a 2D acquisition of the quiet zone, 

probe correction techniques are of interest in order to re-
move the contribution of the probe antenna over the re-
sults. For the planar case [10], the probe correction consists 

on weighting the acquired spectrum  yx k,k
~

AcqE  through 

the inverse of the probe’s plane wave spectrum tensor 
 yx k,kR  (16). This matrix can be expressed as a function 

of the probe’s co-polar  yx k,kVVr  and cross-polar distri-

butions rHV kx,ky  , as in (17). 
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 (17) 

For low cross-pol probes,  yx
1 k,kR simplifies as 

(18). This can be used to perform a full vector characteri-
zation of the different feed-probe configurations, as in (19), 
(20). 

   
   
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







yVV

VV

r

r

k,k/10

0k,k-/1
k,k

x

xy
yx

1R
  (18) 
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 (20) 

The  yx
1 k,kR  inversion is mathematically possible 

whenever rVV kx,ky   does not contain nulls for the spectral 

components to be compensated. The physical implication is 
that acquisitions performed with certain probes might not 
be probe compensable, if that is the case. Besides this con-
straint, the 1 / rVV kx,k y  coefficient is, in most cases, ex-

pected to increase when  yk,k x  directions move away 

from boresight. The consequence is SNR decrease, given 

that the spectral weighting  yx
1 k,kR  reduces the ratio 

between the direct ray signal EQZ
(S) kx,ky 

kx,ky 0
 and these 

noisy components 
EQZ

(N ) kx,ky   EQZ
(S) kx,ky  

kx,ky  kx,max ,ky,max 
. 

Thus, the proposed technique contributes this evi-
dence offering a maximum SNR figure for the acquired 
data making it more robust to noise ab initio and accord-
ingly increasing the SNR of the post-processed data. 

5. Conclusions – Future Work 
A simple quiet zone probing technique has been pro-

posed in this paper, being its interest emerging from evi-
dent bottlenecks at millimeter wavelength frequencies. 
Mathematical description has been proposed for CATR 
facilities, based on nearfield theory and analytical formula-
tions have been given to make it applicable to an arbitrary 
setup. Finally, notes have been given for a potential appli-
cation for which the SNR increase becomes a critical 
aspect. Future work consists on the employment of this 
technique in a real setup so empirical information is 
obtained about its performance.  
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