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Abstract. The differential current conveyor (DCCII) is
a versatile current-mode active element, which has a current
differencing capability. In this study, a new CMOS DCCII
implementation is introduced. As an application example,
a novel voltage-mode (VM) first-order all-pass filter (APF)
is presented. The proposed VM APF employs two resistors,
grounded capacitor and has high-input impedance for cas-
cadability. Simulation and experimental results are given to
verify the operation of the circuit.
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1. Introduction
An all-pass filter (APF) is a special type of filter, which

can modify the phase of the input signal while keeping its
amplitude constant. For the voltage-mode (VM) APFs high-
input impedance is important, if these circuits are used as
a load to another analog filter in the signal-processing path
for compensating phase shifts. Due to this property, there is
no need for an additional buffer or current conveyor (CC)
for cascading and it decreases the number of active ele-
ments in the design. In the current technical literature, sev-
eral VM first-order APFs were proposed employing vari-
ous high-performance active building blocks (ABBs) [1]–
[16], [18]–[21]. These filters have different useful proper-
ties depending on the individual circuit as they are summa-
rized in Tab. 1. For example, the all-pass filters based on
the second-generation current conveyor (CCII) in [1] and [6]
employ a grounded capacitor, but they do not have a high-
input impedance property and the circuit in [1] has disad-
vantage of using three resistors. The all-pass filters in [2]–
[5] employing single second- or third-generation CC do not
have a grounded capacitor and they are not cascadable. Two
cascadable all-pass filters with high-input impedance fea-
ture were proposed using single minus-type CCII in [7], but
they use a floating capacitor and three resistors. The cir-
cuits in [8] and [9] are based on the dual-output CCII and
modified CCII, respectively, enjoy having both high-input

impedance and grounded capacitor. Also circuits in [10]–
[15] have both high-input impedance and grounded capac-
itor, but only filters in [10], [12]–[14] provide low-output
impedance feature simultaneously. The filter in [10] in-
cludes two differential voltage CCs (DVCCs) and circuits
in [11]–[13] employ two differential difference CCs (DD-
CCs). The circuits in [14] and [15] employ fully differen-
tial CC (FDCCII). As drawback of solutions [12] and [13]
the usage of four or three passive elements can be men-
tioned, respectively, but all in grounded form. The circuit
in [16] with a grounded capacitor and single DDCC only
provides low-output impedance. In the literature [17] dif-
ferent kinds of ABBs exist and those are also used in the
design of all-pass filter circuits. The circuit in [18] is cas-
cadable and has a grounded capacitor, but the active element
called voltage differencing-differential input buffered ampli-
fier (VD-DIBA) is an interconnection of two active elements
such as an operational transconductance amplifier and dif-
ferential input voltage buffer. Hence, it may includes large
number of transistor. All-pass filters in [19]–[21] using sin-
gle current-controlled current differencing buffered amplifier
(C-CDBA), current-controlled inverting CDBA, or universal
voltage conveyor (UVC), respectively, have floating capaci-
tor and low-output impedance feature. Unfortunately, from
these three referred circuits only the UVC-based APF in [21]
features with high-input impedance simultaneously.

In addition to above listed ABBs, the differential cur-
rent conveyor (DCCII) was introduced in 1996 [22] as the
first current-mode active element with current differencing
capability. However, in the literature it has not received as
much as attention than the conventional CDBA presented in
1999 [23]. In fact, the DCCII combines the simplicity of the
classical CCII [24] with current differencing feature of the
CDBA. Therefore, the DCCII looks like a CDBA for current
differencing operation, but it has an additional voltage ter-
minal like CCII, which has high-input impedance and can be
useful for cascading VM circuits. In addition, the DCCII in-
cludes fewer numbers of transistors than CDBA, which has
a supplementary voltage buffer stage. In this study, to in-
crease the variety of DCCII circuits in the literature, its novel
implementation using the Taiwan Semiconductor Manufac-
turing Company (TSMC) 0.35 µm level-3 [25] CMOS pro-
cess parameters is proposed. High-input impedance feature
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Reference ABB No. of No. of No. of Grounded No matching High-input Low-output
type# ABBs transistor resistors capacitor constraints impedance impedance

[1] CCII+ 1 X 3 yes no no no
[2] CCII–/CCCII– 1 D 2/1 no no no no
[3] CCIII– 1 24∗ 3/2 no no no no
[4] CCII+ 1 D 2 no no no no
[5] CCII–/CCCII– 1 D 2/1 no no no no
[6] CCII–/CCCII– 1 13∗ 2/1 yes no no no
[7] CCII– 1 X 3 no no yes no
[8] DO-CCII 1 23∗ 2 yes no yes no
[9] MCCII– 1 21∗ 2 yes no yes no
[10] DVCC+ 2 24 1 yes yes yes yes
[11] DDCC 2 44 0 yes yes yes no
[12] DDCC+ 2 24 3 yes yes yes yes
[13] DDCC+ 2 24 2 yes no yes yes
[14] FDCCII 1 36∗ 1 yes yes yes yes
[15] FDCCII 1 44∗ 1 yes yes yes no
[16] DDCC+ 1 18 1 yes yes no yes
[18] VD-DIBA 1 D 0 yes yes yes yes
[19] C-CDBA 1 37∗ 1 no no no yes
[20] C-ICDBA 1 30∗ 0 no no no yes
[21] UVC 1 40∗ 2 no no yes yes

Proposed - simulated DCCII 1 21∗ 2 yes no yes no
Proposed - measured DCCII 2 D 2 yes no yes yes

Tab. 1. Comparison of previously published VM all-pass filters (Note: # Refer Appendix for nomenclature of the ABBs, ∗ Ideal current sources
assumed, X Simulations or experiments not provided, D Direct ICs used).

of the DCCII is with advantage used in a novel cascadable
VM first-order APF design as an application example. The
proposed circuit includes a single DCCII, a grounded capac-
itor, and two resistors. Here it is worth mentioning that, sim-
ilarly to the circuits in [6], [8], [9], [13], the proposed circuit
includes a grounded capacitor in series to X terminal, which
may affect the high frequency behavior of the filter. In ad-
dition, analogous to circuits in [1]–[9], [13], [19]–[21], the
proposed circuit requires a simple resistor matching condi-
tion. Note that in the current integrated circuit (IC) technolo-
gies it is possible to match resistors with much better preci-
sion than 0.1 % [26]. Although these new IC technologies
also offer floating capacitor realization possibility as a dou-
ble poly (poly1-poly2) or metal-insulator-metal (MIM) ca-
pacitor [27], widely accepted are those filters that employ
only grounded capacitors. Compared to floating counter-
parts, grounded IC capacitors have less parasitics that can
be significant from the performance standpoint. In the intro-
duced APF both resistors are in series to X terminals, which
is an advantage, because unwanted effects of the parasitic
resistances at X terminals can be compensated by choosing
sufficiently high resistor values. In addition, due to the high-
input impedance of the circuit there will be no need for an
additional buffer or CC for cascading and this will decrease
the number of active elements in the design. The theoretical
results are verified by SPICE simulations and the behavior
of the proposed circuit is also experimentally measured us-
ing the readily available current feedback amplifiers (CFAs)
AD844 ICs produced by the Analog Devices, Inc. Thanks to
the voltage buffer in the output part of the CFA used in exper-
iments, the proposed APF also has low-output impedance,
and therefore, it is fully cascadable.

2. The DCCII and Proposed CMOS
Implementation
The differential current conveyor (DCCII) [22] is

a four-terminal ABB and its circuit symbol is shown in
Fig. 1(a). The difference of the currents at the XP and XN
terminals are reflected to the Z terminal. The potential of the
Y terminal is copied to the XP and XN terminals. Consid-
ering the non-idealities caused by the physical implementa-
tion of the DCCII, the relationship between port currents and
voltages can be described by the following hybrid matrix:


vXN
vXP
iZ
iY

 =


0 0 βN
0 0 βP

αP −αN 0
0 0 0


 iXP

iXN
vY

 (1)

where ideally βN = βP = 1 and αN = αP = 1 that represent
the voltage and current transfer ratios of the DCCII, respec-
tively.

The realization of the CMOS DCCII shown in Fig. 1(b)
was derived from the C-CDBA/C-ICDBA and CCCII struc-
tures presented in [19], [20], and [28], respectively. In
Fig. 1(b), transistors M1–M4, M18, and M19 realize a mixed
translinear loop, which transfers Y terminal potential to both
XN and XP terminals. Transistors M5–M10 and M12 pro-
vide biasing for the mixed translinear loop. Transistors M11,
M13–M19, M20, and M21 form a current differencing circuit
at the Z terminal for the input currents flowing in to the XN
and XP terminals.
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Fig. 1. (a) Circuit symbol of DCCII and (b) its proposed CMOS implementation.

3. Application Example: A Cascad-
able All-Pass Filter with Grounded
Capacitor
The proposed first-order all-pass filter using a single

DCCII, two resistors, and one grounded capacitor is shown
in Fig. 2. Its voltage transfer function can be expressed as:

Vo

Vi
=

2+2sCR1− sCR2

2+2sCR1
. (2)

Here it should be emphasized that the presented circuit
has resistors in series to its X terminals. Hence, by selecting
sufficiently high values of R1 and R2 the unwanted effects
of the parasitic resistors at the X terminals to the operation
and resistor matching condition of the circuit can be easily
compensated. Assuming 4R = R2 = 4R1, (2) reduces to:

Vo

Vi
=

1− sCR
1+ sCR

. (3)

Considering non-idealities given in (1), the following
transfer function is obtained:

Vo

Vi
=

(1+αP)βP +(1+αP)βPsCR1−αNβNsCR2

(1+αP)+ sCR1(1+αP)
. (4)

For a known current and voltage gain values, a resistor
matching value of k (R2 = kR1 = kR) can be obtained that
can compensate for effect of active element non-idealities as
follows:

k =
2βP(1+αP)

βNαN
. (5)

The parasitics in the physical realization of the current
conveyors limit the high frequency of operation. Therefore,
the α(s) and the β(s) are respectively the current and voltage
transfer ratios of the DCCII and they can be described by the
following first-order functions:

αN,P(s) =
α0

1+ sτα

, βN,P(s) =
β0

1+ sτβ

(6)

Y

XN

XP

Z

R2

R1

DCCII

C

Vi

Vo

Fig. 2. The proposed first-order all-pass filter employing
a DCCII.

where the α0 and β0 are the values of the current and the volt-
age transfer ratios and ωα = 1/τα and ωβ = 1/τβ represent
their corresponding poles. Here for simplicity, the current
and voltage gains at low frequencies are assumed to be equal
to α0 and β0, respectively. Combining (6) with non-ideal
transfer function in (4) for 4R = R2 = 4R1, the frequency
dependent transfer function of the presented circuit can be
expressed as follows:

Vo(s)
Vi(s)

= β0
(1+ sτα)(1+ sCR)+(1−3sCR)α0

(1+ sCR)(1+ sτβ)(1+α0 + sτα)
. (7)

Equation (7) shows that the presented circuit can still
work as first-order all-pass filter for {τα,τβ}�CR and there
is no stability problem due to the frequency dependency of
the current and voltage gains.

4. Simulation Results
To verify the theoretical analyses, the proposed CMOS

DCCII implementation in Fig. 1(b) is examined using the
SPICE simulation program. In the simulations, the TSMC
0.35 µm level-3 SPICE parameters were used that are listed
in Tab. 2 [25]. The aspect ratios of the MOS transistors are
given in Tab. 3. The DC supply voltages are ±2.5 V and the
biasing current is 400 µA. The voltage and current charac-
teristics of the introduced DCCII are given in Fig. 3. Main
parameters of the proposed DCCII are summarized in Tab. 4.
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.MODEL CMOSN NMOS (LEVEL = 3 TOX = 7.9E–9 NSUB = 1E17 GAMMA = 0.5827871 PHI = 0.7 VTO = 0.5445549
+ DELTA = 0 UO = 436.256147 ETA = 0 THETA = 0.1749684 KP = 2.055786E–4 VMAX = 8.309444E4 KAPPA = 0.2574081
+ RSH = 0.0559398 NFS = 1E12 TPG = 1 XJ = 3E–7 LD = 3.162278E–11 WD = 7.046724E–8 CGDO = 2.82E–10
+ CGSO = 2.82E–10 CGBO = 1E–10 CJ = 1E–3 PB = 0.9758533 MJ = 0.3448504 CJSW = 3.777852E–10 MJSW = 0.3508721)
.MODEL CMOSP PMOS (LEVEL = 3 TOX = 7.9E–9 NSUB = 1E17 GAMMA = 0.4083894 PHI = 0.7 VTO = –0.7140674
+ DELTA = 0 UO = 212.2319801 ETA = 9.999762E–4 THETA = 0.2020774 KP = 6.733755E–5 VMAX = 1.181551E5 KAPPA = 1.5
+ RSH = 30.0712458 NFS = 1E12 TPG = –1 XJ = 2E–7 LD = 5.000001E–13 WD = 1.249872E–7 CGDO = 3.09E–10
+ CGSO = 3.09E–10 CGBO = 1E–10 CJ = 1.419508E–3 PB = 0.8152753 MJ = 0.5 CJSW = 4.813504E–10 MJSW = 0.5)

Tab. 2. TSMC 0.35 µm level-3 CMOS parameters [25].

PMOS Transistors W(µm) L(µm)
M3, M4, M19, M20 60 0.35
M5–M7 30 2
M12, M13, M16 30 1
M17 60 2
NMOS Transistors W(µm) L(µm)
M1, M2, M18, M21 20 0.35
M8, M9 10 2
M10, M11, M14 10 1
M15 20 2

Tab. 3. Aspect ratio of the MOS transistors in DCCII.

Parameter Value
Linearity vXN/vY, vXP/vY (V) both –1.23→ 1.13
Linearity iZ/iXN, iZ/iXP (mA) –0.75→ 0.96, –2.77→ 2.23
vXN/vY, vXP/vY gains (βN, βP) both 0.983
iZ/iXN, iZ/iXP gains (αN, αP) 1.074, 1.087
vXN/vY, vXP/vY f-3dB (GHz) both 7.2
iZ/iXN, iZ/iXP f-3dB (MHz) 350, 432

Tab. 4. Main parameters of the proposed DCCII given in
Fig. 1(b).

The simulations shows that the current gain αN of the DCCII
a bit alters from αP while the voltage gains βN and βP are
equal. The f-3dB frequency of voltage transfers is signifi-
cantly higher than cut-off frequency of the current transfers.

The passive element values of the all-pass filter in
Fig. 2 were chosen as R1 = 2 kΩ, R2 = 8 kΩ, and
C = 200 pF to obtain a phase shift of 90◦ at pole frequency
of f0 ≈ 398 kHz. The phase and gain responses of the all-
pass filter are illustrated in Fig. 4. The total harmonic distor-
tion (THD) variation with respect to amplitude of the applied
sinusoidal input voltage at the pole frequency of the all-pass
filter is shown in Fig. 5. The THD rapidly increases when the
input signal is increased beyond 0.85 V amplitude. An input
with the amplitudes of 0.3 V, 0.6 V, and 0.9 V yields THD
values of 0.029 %, 0.051 %, and 0.623 %, respectively. The
total power dissipation of the circuit is found as 14.3 mW.
Moreover, using the INOISE and ONOISE statements, the
input and output noise behavior with respect to frequency
has also been simulated, as it is shown in Fig. 6. The equiv-
alent input and output noises at f0 ≈ 398 kHz are found as
43.29 and 39.37 nV/

√
Hz, respectively.

The SPICE simulations confirm the feasibility of the
proposed circuit and results are in good agreement with the-
ory. Note that the inconsistencies in magnitude and phase
characteristics are due to the non-idealities discussed in Sec-
tion 3.
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Fig. 3. Characteristics of the proposed DCCII implementation.
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Fig. 4. Ideal and simulated gain and phase responses for the pre-
sented first-order all-pass filter.
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Fig. 8. Ideal and measured all-pass gain and phase responses.

 

Fig. 9. The photograph of the experimental result for Lissajous
ellipse at the pole frequency (horizontal and vertical
scales are 0.2 V/division).

5. Experimental Results
In order to confirm the simulation results, the behavior

of the proposed APF has also been verified by experimental
measurements. The DCCII in Fig. 7 employs two commer-
cially available CFAs AD844 ICs. Here should be noted that
the output circuitry of CFA is voltage buffer. Hence, using
the full potential of the CFA2, the proposed APF has both
high-input and low-output impedances, simultaneously. The
supply voltages are VDD =−VSS = 12 V. The proposed APF
with a pole frequency of f0 ∼= 31.8 kHz is designed with pas-
sive element values of R1 = 500 Ω, R2 = 2 kΩ, C = 10 nF,
and the results are shown in Fig. 8. Note that the passive
element tolerances are 2 % and 5 %, respectively. In addi-
tion, input and output signals at the pole frequency have also
been applied to the oscilloscope in X-Y mode and the phase
relationship between the signals is presented as a Lissajous
ellipse. In the oscilloscope photography shown in Fig. 9, the
horizontal and vertical scales are 0.2 V/division. Experimen-
tal results confirmed the theoretical results.

6. Conclusions
In this study, a new CMOS DCCII implementation is

proposed. Usefulness of the DCCII is shown in a novel all-
pass filter circuit. The presented filter has a high-impedance
input and a grounded capacitor. Moreover, the measured
APF has low-output impedance as well. Simulation and ex-
perimental results are given to verify the theory.

7. Appendix
This section provides full nomenclature of the afore-

mentioned ABBs in Tab. 1.

CCII+(−): Plus-type (minus-type) second-generation
current conveyor

CCCII−: Minus-type second-generation current-
controlled current conveyor

CCIII−: Minus-type third-generation current
conveyor

DO-CCII: Dual-output second-generation current
conveyor

MCCII−: Minus-type modified second-generation
current conveyor

DVCC+: Plus-type differential voltage current
conveyor

DDCC+: Plus-type differential difference current
conveyor

FDCCII: Fully differential current conveyor
VD-DIBA: Voltage differencing-differential input

buffered amplifier
C-(I)CDBA: Current-controlled (inverting) current

differencing buffered amplifier
UVC: Universal voltage conveyor
DCCII: Differential current conveyor
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