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Abstract. This paper deals with Carrier Frequency Offset
(CFO) estimation for OFDM systems using repetitive pat-
terns in the training symbol. A theoretical comparison based
on Cramer Rao Bounds (CRB) for two kinds of CFO estima-
tion methods has been presented in this paper. Through the
comparison, it is shown that the performance of CFO esti-
mation can be improved by exploiting the repetition property
and the exact training symbol rather than exploiting the rep-
etition property only. The selection of Q (number of repeti-
tion patterns) is discussed for both situations as well. More-
over, for exploiting the repetition and the exact training sym-
bol, a new numerical procedure for the Maximum-Likelihood
(ML) estimation is designed in this paper to save computa-
tional complexity. Analysis and numerical result are also
given, demonstrating the conclusions in this paper.
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1. Introduction
The OFDM transmission has been widely used in mod-

ern communication systems, due to its robustness against the
frequency selectivity in wireless channel [1]. The utiliza-
tion of Cyclic Prefix (CP) enables OFDM system to convert
a frequency selective channel into a parallel collection of fre-
quency flat channels, leading to greatly simplified equalizer
design [2]. OFDM has been of interest for wireless broad-
casting, Wireless MAN [3][4].

Some of the existing CFO estimation algorithms per-
forms CFO estimation by only exploiting the repetitive pat-
terns in the training symbol [5]-[9]. When a training symbol
with repetition property is transmitted, the receiver can ac-
quire the CFO estimation based on the auto-correlation of
the received signal without exact knowledge on the training
symbol. A simple case is that the training symbol is repeated
only twice [5]. There are also methods where the training
symbol is repeated more than twice [6][7]. By taking the

correlation between any two patterns (adjacent or not) for
the CFO estimation, better accuracy can be obtained in [8].
The proposed method in [8] is actually ML-based in the case
of more than two repetition patterns under the condition of
AWGN channel. On the other side, there are also literatures,
focusing on CFO estimation by exploiting both repetitions
and exact training symbol [10][11]. In [10], the CRB bound
for CFO estimation is derived for frequency selective chan-
nel. Based on the derived CRB representation, the optimal
design of subblock is investigated in [10]. By exploiting both
the repetition property and the exact training symbol, a ML-
based estimation of CFO is proposed in [11]. To solve the
corresponding likelihood equation, a two-step searching pro-
cedure is employed, which may consume great computation
complex.

Although excellent works have been done by adopting
both strategies, a comparison is never provided in the ex-
isting literature. In this paper, that comparison is given by
exploiting the CRB representations in both situations. This
theoretical comparison clearly shows that we can obtain im-
proved performance by exploiting not only the repetitions
but also the exact training symbol. With this theoretical con-
clusion, newly designed algorithm should focus on exploit-
ing both repetitions and exact training symbol since it can
provide a better performance. For exploiting the repetitions
and exact training symbol, a new numerical procedure is de-
scribed in this paper to solve the ML-estimation, which can
greatly save the computational complexity.

The rest of this paper is organized as follows. The sig-
nal model is given in Section 2. The CRB bounds for both
two cases in Additive White Gaussian Noise (AWGN) chan-
nel are derived and compared in Section 3. Section 4 derives
the proposed algorithm in a ML manner. Performance anal-
ysis and numerical results are provided in Section 5 and Sec-
tion 6, finally the conclusion is dropped in Section 7.

2. Signal Model
Consider an OFDM transmission from transmitter to

receiver where a known training symbol is transmitted at the
beginning of each frame. The known training symbol can be
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represented as

s[k] =
1
√

N

N−1∑
n=0

X[n]exp
(
− j

2πkn
N

)
(1)

where k ∈ [−NCP,N −1] and N,NCP are the subcarrier num-
ber and length of Cyclic Prefix (CP) respectively. X(n) are
the frequency domain symbols mapped on each subcarrier.
Due to repetition pattern of the training symbol, adjacent
non zero frequency domain symbols are equally spaced by
Q−1 subcarriers. Let M denote the length of each repetition
block, so that M = N/Q. Owing to frequency selectivity of
wireless channel and CFO, the received signal is given by

r[k] = (s[k]∗h[k])exp
(

j
2πkε

N

)
+w[k] (2)

where ∗ denotes the linear convolution. h[k] and w[k] are the
channel response (length L) and additive noise, respectively.
ε is the CFO normalized by one subcarrier spacing. Since
this paper only concern CFO estimation, the timing synchro-
nization is assumed to be perfect. Under this assumption, the
CP in the received signal can be easily removed, then the re-
ceived signal can be represented in matrix form as

r = FSh + w. (3)

Here, r = (r[0],r[1], · · · ,r[N − 1])T . F is a diagonal matrix
F = diag

{
1,exp

(
j 2πε

N

)
, · · · ,exp

[
j 2πε(N−1)

N

]}
. h is a channel

response vector with length L, i.e. h = (h[0], · · · ,h[L− 1])T .
w denotes the additive noise vector with covariance matrix
σ2
wI. AT denotes the transpose of matrix or vector A. It can

be observed that, due to repetition patterns, the matrix S may
be written as

S = [ST
0 ,S

T
0 , · · · ,S

T
0 ]T (4)

where S0 is an M×L matrix with elements

[S0](m,n) = s[(m−n)M]. (5)

Here, 0 ≤ m ≤ M−1,0 ≤ n ≤ L−1 and (m−n)M means m-n
modulo M.

Note that in AWGN channel, with a unknown initial
phase θ, the received signal may be written as

r = Fsexp( jθ) + w. (6)

It is observed that we cannot obtain (6) by simply making
h = 1 in (3). Actually, the unknown initial phase θ should al-
ways exits due to unsynchronized carriers in the transmitter
and the receiver. However, the initial phase may be com-
bined with channel response in frequency selective channel,
leading to implicit unknown initial phase in (3). While in
AWGN channel, the unknown initial phase is explicitly rep-
resented with θ in (6). Accordingly, matrix S is reduced
to vector s in AWGN channel, where s can be written as
s = (sT

0 ,s
T
0 , · · · ,s

T
0 )T and s0 = (s[0], s[1], · · · , s[M−1])T .

3. Cramer Rao Bounds: Comparison
In this section, we present a comparison between the

situation where only repetition property is exploited and the
situation where both repetitions and the exact training sym-
bol is in use. For simplicity, we only focus on the CRBs in
AWGN channel.

3.1 Case I: Repetition Property Only
Suppose a transmitted signal is received in AWGN

channel, as represented in (6). Since the transmitted signal
is independent of noise, the received signal can be modeled
as a Gaussian random process with the following correlation
properties

E{r∗[k]r[k + m]} =


σ2

s +σ2
w m = 0,

σ2
s exp

(
j 2πqε

Q

)
m = qM,

0 otherwise
(7)

where q = 1, 2, · · · ,Q − 1. Note that (7) holds only for
k ∈ [0, 1, · · · , M − 1]. It can be observed from (7) that the
probability distribution function (PDF) has no relation with
initial phase θ.

If we define yk = (r[k],r[k + M], · · · ,r[k + (Q− 1)M])T

for k ∈ [0, 1, · · · , M−1], then the PDF of vector r can be re-
presented as

f (r;ε) =

M−1∏
k=0

f (yk;ε) (8)

where, f (yk;ε) is given by

f (yk;ε) =
1

πQ detK
exp

(
−yH

k K−1yk
)

(9)

where AH denotes the conjugate transpose of matrix or vec-
tor A. In (9), K is a Q×Q correlation matrix whose (m,n)th
element is E{r[k +mM]r∗[k +nM]}, where k ∈ [0, 1, · · · , M−
1] and m,n ∈ [0, 1, · · · , Q−1].

Then, following the derivation in [9], the derived CRB
of ε in Case I is found to be

CRB1 =
3Q2

2π2N(Q2−1)

(
SNR−1 +

SNR−2

Q

)
(10)

where SNR is defined as SNR =σ2
s/σ

2
w. In high SNR condi-

tion, the term SNR−2 may be omitted and the derived CRB1
in (10) is then reduced to

CRB1 =
3SNR−1

2π2N(1−Q−2)
(11)

which is as same as the one derived in [6].

3.2 Case II: Both Repetition Property
and Exact Training Symbol

In Case II, we focus on deriving the CRB when both
repetition property and exact training symbol are exploited.
Define rq = (r[(q−1)M],r[(q−1)M+1], · · · ,r[(q−1)M+ M−
1])T for q = 1, 2, · · · ,Q, then the PDF of r can be represented
by
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Fig. 1. Comparison between CRB1 and CRB2.

f (r;θ,ε) =

Q∏
q=1

f (rq;θ,ε). (12)

Since the training symbol is also utilized, the vector s, as well
as s0, are both known to the receiver. Noting the following
relation,

rq = F0s0e j[θ+2πε(q−1)/Q)] + wq, (13)

the PDF of rq can be obtained as

f (rq;θ,ε) = (14)
1

(πσ2
w)M

exp
(
−

1
σ2
w

∥∥∥∥rq−F0s0e j[θ+2πε(q−1)/Q)]
∥∥∥∥2

)

where F0 is given by

F0 = diag
{
1,exp

(
j 2πε

N

)
, · · · ,exp

[
j 2πε(M−1)

N

]}
.

Since the PDF in (12) depends on two parameters (i.e.
θ and ε), Fisher information matrix has to be employed to
derive the CRB of ε. Following the definition in [12], the
Fisher information matrix in Case II can be written as

U =


E

[
∂2 ln f (r;θ,ε)

∂θ2

]
E

[
∂2 ln f (r;θ,ε)

∂θ∂ε

]
E

[
∂2 ln f (r;θ,ε)

∂θ∂ε

]
E

[
∂2 ln f (r;θ,ε)

∂ε2

]
 . (15)

Let U−1 be the inverse of U, then the CRB for the estimation
of ε is expressed as

CRB2 = −[U−1](2,2) (16)

where [U−1](2,2) denotes the element at lower right corner
of the 2× 2 matrix U−1. By substituting equations (14) and
(15) into (16), in consequence, the derived CRB of ε can be
represented as

CRB2 =
3N2QA0σ

2
w

2π2
[
12Q2(A0C0−B2

0) + N2(Q2−1)A2
0

] (17)

where A0 = sH
0 s0, B0 = sH

0 D0s0 and C0 = sH
0 D2

0s0. D0 is
a M ×M diagonal matrix whose (i, i)th element is equal to
i− 1 for 1 ≤ i ≤ M. Unlike the expression of CRB1 in 10),
where the result can be represented as a function of SNR, the
derived CRB2 in Case II cannot be given in terms of SNR
explicitly. By artificially restricting the square amplitude of
frequency domain symbol to be a constant σ2

s , we can obtain
that A0 = Mσ2

s . Therefore, the SNR may be written equiva-
lently as

SNR =
sH

0 s0

Mσ2
w

or SNR =
sHs
Nσ2

w

. (18)

Since the derived CRB2 has relation with s0 (through A0,B0
and C0), it means the performance that CRB2 can achieve
depends on specific training symbol. Optimal training sym-
bol for channel estimation can be found by computer search
in [13]. However, the optimal training symbol for CFO esti-
mation is still unknown and further investigation is required.
In this paper, a Zadoff-Chu sequence is employed to generate
the frequency domain training symbols [14].

Note that a similar situation in Case II has also been
investigated in [10]. However, the derivation in [10] is not
dedicated for OFDM systems, and thus there is not a par-
ticular equation that can be directly used for the comparison
here. Therefore, we present a newly derived CRB2.

3.3 Discussion
As a comparison, the expression of CRB1 in (10) and

that of CRB2 in (17) are plotted in Fig. 1. From Fig. 1, an
obvious performance improvement can be observed by ex-
ploiting the exact training symbol, as well as the repetition
property. This comparison can explicitly prove the conclu-
sion stated above, i.e. by exploiting not only the repetition
property but also the exact training symbol, more accurate
CFO estimation can be obtained.

It is also noted that CRB1 can be improved by increas-
ing Q. This is not surprising because the uncertainty of the
training symbol decreases as Q increases. Therefore, we can
get more information about the training symbol by adopting
larger Q and the CRB1 is improved correspondingly. This
observation indicates that larger Q should be adopted when
only the repetition property is exploited. On the other side,
we find that CRB2 is independent on Q. Since the exact
training symbol is known, no more information about the
training symbol can be acquired by increasing Q, and thus
CRB2 keeps unchanged for different Q. Therefore, the selec-
tion of Q mainly depends on the implementation complexity
when both repetition property and exact training symbol are
exploited. As it will be shown in section 5.2, the complex-
ity can increase in proportion to Q2, and thus the minimal
repetition patterns, that is Q = 1, is supposed to be the best
choice.
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4. Adaptive Numerical Method
for ML-Estimation

4.1 Derivation of ML-Estimation
Recall the signal model in (3), the PDF of received vec-

tor r can be written as

f (r;h, ε) =

Q∏
q=1

f (rq;h, ε). (19)

In a frequency selective channel, the received rq can be rep-
resented by

rq = F0S0he j 2πε
Q (q−1)

+ wq. (20)

Therefore, the PDF of rq is given by

f (rq;h, ε) =
1

(πσ2
w)L

exp
[
−

1
σ2
w

∥∥∥∥rq−F0S0he j 2πε
Q (q−1)

∥∥∥∥2
]
.

(21)

We can obtain the ML estimation of ε by maximizing
the PDF in (19). As (19) can be further simplified by sub-
stituting (20) and (21) into (19), the estimation of ε may be
obtained by equivalently maximizing the following Λ0(h, ε)

Λ0(h, ε) = −
(
rHr−hHu−uHh + hHCh

)
(22)

where

u =

Q∑
q=1

SH
0 FH

0 rq exp
[
− j

2πε
Q

(q−1)
]
, (23)

C = QSH
0 S0, (24)

due to the following relation,

max
{h,ε}

Λ0(h, ε) = max
{ε}

{
max
{h}

Λ0(h, ε)
}
.

We can first derive the estimation of channel response h. For
a given ε, the Least Square (LS) estimation of h can be given
by [12]

ĥ = C−1u. (25)

By substituting this relation into (22), noting that CH = C,
we can obtain the ML estimation of ε as

ε̂ = argmax
{ε}

Λ1(ε) (26)

where Λ1(ε) = uHC−1u.

To derive (26), the PDF in (21), where the training sym-
bol (i.e. matrix S0) is considered to be known to the receiver,
is employed, instead of a PDF where the training symbol
is modeled as Gaussian noise (e.g. (9)). This guarantees
that the proposed ML estimation algorithm exploits the exact
training symbol, as well as the repetition property. It should
be noted that a similar expression for CFO estimation can
be found in [11]. This is not surprising because both algo-
rithms employ the ML criterion, and thus lead to the same
expression for CFO estimation. However, for the maximiza-
tion of (26), a two-step search procedure is employed in [11].

The first step is carried out by comparing the cost function
at a group of discrete CFO values. The second step is imple-
mented by some interpolation method. However, the com-
putational efficiency of this two-steps method is low due to
exhaustive searching, so that it should be avoided in real time
processing.

4.2 Proposed ANM Procedure
To solve (26) effectively, a new numerical procedure

different from that adopted in [11] is described. In this pro-
cedure, we employ an Adaptive Numerical Method (ANM)
to find the optimal ML estimation of ε. This ANM is based
on the steepest descent scheme [16] and it can be carried out
following three steps, as described in Tab. 1.

Step Operation
1 Determine initial CFO ε0,

step size µ and threshold T
2 Calculate ∂uHC−1u/∂ε using current εi,

update εi+1 = εi +µ ·∂uHC−1u/∂ε
3 if ∂uHC−1u/∂ε < T , stop;

if ∂uHC−1u/∂ε > T , return to step 2.

Tab. 1. Adaptive Numerical Method.

Note that the obtained estimation of ε using ANM is
the local maximum, so that the estimation range is deter-
mined by the initial value, as well as the pattern of Λ1(ε).
Usually, we choose ε0 = 0 as the initial value, so that the
estimation range only depends on the pattern of Λ1(ε). The
patterns of Λ1(ε) for Q = 2, 4 have been plotted in Fig. 2. As
depicted in Fig. 2, the practical estimation ranges by using
ANM for both Q = 2,4 are |ε̂| < 1. For ε that is out of the
range (−1,1), ANM algorithm will converge to neighboring
local maximum (e.g. ε = 1.4 in Fig. 2), and thus the esti-
mator is not unbiased any more. The proposed algorithm is
adaptive because it can automatically converge to the correct
CFO value as long as the true CFO is inside the estimation
range.
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RADIOENGINEERING, VOL. 21, NO. 3, SEPTEMBER 2012 827

In a frequency selective channel, the received signal
may experience severe fading, leading to very unstable re-
ceived signal level. This changing received signal level can
make the ANM algorithm unconverged and the proposed
ML estimation may also malfunction. To mitigate variation
of received signal level, we employ normalized ∂Λ1(ε)/∂ε,
instead of directly using of ∂Λ1(ε)/∂ε, to perform step 3 in
Tab. 1, i.e.

1
rHr

[
∂Λ1(ε)
∂ε

]
≷ T. (27)

5. Performance Analysis

5.1 Mean and Variance
In this section, we present some analysis on the mean

and variance performance on the proposed algorithm.

The mean of proposed ML estimator can be assessed
using the method indicated in [15]. Assuming the SNR is
high enough, the mean of proposed ML estimator can be ap-
proximated by

E(ε̂) ≈ ε−
E [∂Λ1(ε)/∂ε]

E
[
∂2Λ1(ε)/∂ε2] . (28)

For the integrity of the formal presentation of this paper, de-
tailed derivation of the right hand side of equation above is
found in Appendix, we only present the result here. As indi-
cated in Appendix, it is found that

E(ε̂) = ε. (29)

This relation means that the proposed ML estimator
is unbiased, even in frequency selective channel. To avoid
the cumbersome derivation of variance performance, we use
CRB2 obtained in Section 3 to approximate the variance ex-
pression of proposed estimator, since the variance of ML es-
timation can achieve the lower bound determined by CRB
at high SNR [12]. It will be seen in next section that this
approximation is appropriate. Under that approximation, the
variance of the proposed estimator can be given by

var(ε̂) =
3N2QA0σ

2
w

2π2
[
12Q2(A0C0−B2

0) + N2(Q2−1)A2
0

] . (30)

5.2 Computation Complexity
The computation complexity is investigated in this sec-

tion in terms of complex additions (cas) and complex mul-
tiplies (cms). Since the proposed algorithm is an iterative
method, we only calculated the cas and cms required in each
iteration. During each iteration, we should calculate the
term ∂uHC−1u/∂ε. As shown in (23) and (24), SH

0 S0 and
SH

0 FH
0 are fixed, so they can be precomputed and thus no

complexity is caused. Therefore, we need Q2N2 −1 cas and
Q2(N2 + N + 1) cms in total.

6. Numerical Results
Some numerical results are given in this section to ver-

ify the theoretical analysis and extend the analytical analy-
sis. An OFDM system with N = 64 subcarriers is employed
in this simulation. We use Zadoff-Chu sequence to generate
the frequency domain training symbols. The length and root
value of employed Zadoff-Chu sequence are N/Q and 18,
where Q = 2, 4. The generated Zadoff-Chu sequence sym-
bols are equally spaced by Q− 1 zeros. To ensure that the
comparison between the case of AWGN channel and that
of FSRF channel is believable, the power of each path in
FSRF channel should coincide with the following relation∑6

l=1σ
2
l = 1. For simplicity, the unitary power are equally

allocated to all those 6 paths. As a comparison, the methods
in [7] and [8], which exploit the repetitions only for CFO es-
timation, are also investigated in the simulation. In the sim-
ulation, the initial parameters of ANM algorithm are given
in the following

ε0 = 0,µ = 0.001,T = 0.01 .

Fig. 3 illustrates the average estimation result versus
the real CFO value with proposed ML estimator in this paper.
This figure is plotted under the condition that SNR = 10 dB.
It should be noted that Fig. 3 shows both the case of AWGN
channel and the case of FSRF channel. In both cases,
the proposed estimator is unbiased within given estimation
range, which coincides with the conclusion we have derived
in Section IV. Fig. 3 also shows that the estimation range is
as large as |ε̂| < 1 for both Q = 2 and Q = 4, which is also
a derived result above. For CFO value that is out of the esti-
mation range, the ANM algorithm converges to neighboring
local maximum (cf. Fig. 2), thus the estimator is not unbi-
ased any more.

Fig. 4 shows the MSE performance of proposed ML
estimator, as well as the conventional methods, for Q = 2 in
AWGN channel. From Fig. 4, it can be seen that the per-
formance of those three estimators can almost coincide with
corresponding CRBs. Due to the performance improvement
of CRBs, the proposed ML estimator may also outperform
conventional methods. As depicted in Fig. 4, the perfor-
mance improvement at small SNR can be as large as 2 dB.
It should also be noted that conventional methods proposed
in [7] and [8] have the same performance for Q = 2. This
is because there are only two repetition patterns that can be
used, thus those two estimators work in the same manner.

Fig. 5 gives the MSE versus SNR curves for Q = 4 in
AWGN channel. As depicted in Fig. 5, the proposed ML
estimator still outperforms the conventional methods, how-
ever, the quantity of performance improvement descends. At
small SNR, about 1 dB SNR can be saved by using the pro-
posed ML estimator rather than conventional methods. This
can be accounted for as follows: due to increased Q, the
number of repetition patterns increases in the training sym-
bol, thus the performance of conventional methods those ex-
ploit only repetition property also improves accordingly. It
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is also noted that the conventional method proposed in [8]
gives better performance than the one proposed in [7]. This
is because the repetition property has been fully exploited
using the conventional method proposed in [8]. From Fig. 5,
it can be seen that the method in [8] has already achieved
the CRB1 bound. It means we cannot find an algorithm that
outperforms the method proposed in [8] by only exploiting
the repetition property of the training symbol. To further im-
prove the performance, the exact training symbol should also
be utilized. As depicted in Fig. 5, the proposed ML estima-
tor in this paper can outperform those conventional methods,
due to not only exploiting the repetition property but also the
exact training symbol.

The performance of those three estimators in FSRF
channel with Q = 2 are shown in Fig. 6. As expected,
both conventional methods proposed in [7] and [8] still have
the same performance even in frequency selective channel.
A significant performance improvement can be observed in
Fig. 6 by using the proposed ML estimator in this paper
rather than those conventional algorithms. At small SNR, the
SNR saving can be as large as 3 dB. The CRB1 and CRB2
in AWGN channel are also plotted in Fig. 6 in order to make
a comparison with the performance in FSRF channel. As
it can be seen in Fig. 6, due to channel fading, the perfor-
mance in FSRF channel performs significantly worse than
that in AWGN channel.

Fig. 7 plots the performance curves in FSRF channel
for Q = 4. As there are more than two repetition patterns
can be utilized, the estimator proposed in [8] outperforms
the estimator proposed in [7], due to full exploitation of the
repetition property. The proposed ML estimator in this pa-
per shows the optimal performance in these three estimator,
because of the utilization of the exact training symbol. By
using the proposed ML estimator rather than conventional
methods, 2 dB and 4 dB SNR can be saved respectively in
FSRF channel for Q = 4.

To evaluate the convergence performance of the pro-
posed algorithm, we carried out a simulation in the AWGN
channel with SNR = 25 dB and Q = 4. Different step sizes
are considered in the simulation, and the simulation results
are shown in Fig. 8. As shown, the proposed algorithm can
converge for both step sizes. It may converge fast when µ is
large. This is because the increment in each iteration is large
due to adoption of large step size. However, the cost is the
poor asymptotical performance. Large step may cause in-
accurate estimation when estimate is close to the true CFO.
On the contrary, small step size can lead to more accurate
asymptotical performance, at the cost of slower convergence
rate.

7. Conclusion
Through the comparison of corresponding CRBs, it

is shown that the CFO estimation performance can be im-
proved by exploiting the repetition property and the exact
training symbol. The selection of Q for different situations

is also discussed in this paper. For exploiting the repetition
property and the exact training symbol, a ML-estimation has
been derived in this paper. To save computational complex-
ity for solving the likelihood function, a new numerical pro-
cedure is proposed in this paper. Numerical results are also
presented to demonstrate the conclusions in this paper.
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Appendix: Derivation of (28)
In this appendix, we derive the relations of right hand

side of (28). By substituting (23) and (24) into (26), Λ1(ε)
may be rewritten as

Λ1(ε) =
1
Q

Q∑
m=1

Q∑
n=1

rH
mF0PFH

0 rn exp
[

j
2πε
Q

(m−n)
]

(31)

where P = S0
(
SH

0 S0
)−1

SH
0 is the projection matrix. Noting

the following relations,

∂F0/∂ε = j
2π
N

D0F0, (32)

∂FH
0 /∂ε = − j

2π
N

D0FH
0 , (33)

here, D0 is a M×M diagonal matrix whose (i, i)th element is
equal to i−1 for 1 ≤ i ≤M, then the first order differentiation
of Λ1(ε) can be represented as

∂Λ1(ε)
∂ε

= j
2π
QN

Q∑
m=1

Q∑
n=1

rH
mF0B(m,n)FH

0 rne j 2πε
Q (m−n) (34)

where B(m,n) = D0P−PD0 + (m− n)MP. Substituting (20)
into (34), the resulting differentiation of Λ1(ε) may be
rewritten as

∂Λ1(ε)
∂ε

= j
2π
QN

Q∑
m=1

Q∑
n=1

Γ(m,n) (35)

where

Γ(m,n) = hHSH
0 B(m,n)S0h +

hHSH
0 B(m,n)FH

0 wne− j 2πε
Q (n−1)

+

wH
mF0B(m,n)S0he j 2πε

Q (m−1)
+

wH
mF0B(m,n)FH

0 wn. (36)

Since P is the projection matrix, it can be obtained that

hHSH
0 D0PS0h = hHSH

0 PD0S0h. (37)

Bearing in mind the relation in (37), we then derive that

Γ(m,n) = M(m−n)hHSH
0 PS0h +

hHSH
0 B(m,n)FH

0 wne− j 2πε
Q (n−1)

+

wH
mF0B(m,n)S0he j 2πε

Q (m−1)
+

wH
mF0B(m,n)FH

0 wn. (38)

Due to the following relations,

M

 Q∑
m=1

Q∑
n=1

(m−n)

hHSH
0 PS0h = 0, (39)

E
[
hHSH

0 B(m,n)FH
0 wne− j 2πε

Q (n−1)
]

= 0, (40)

E
[
wH

mF0B(m,n)S0he j 2πε
Q (m−1)

]
= 0, (41)

the mean of (35) can be simplified as

E
[
∂Λ1(ε)
∂ε

]
= j

2π
QN

Q∑
m=1

Q∑
n=1

zH
mB(m,n)zn (42)

where zi = FH
0 wi for i = 1,2, · · · ,Q and thus E

(
zzH

)
= σ2

wI.
As zi is white noise, (39) can rewritten as

E
[
∂Λ1(ε)
∂ε

]
= j

2π
QN

Q∑
m=1

M∑
i=1

σ2
wB(m,m)

(i,i) (43)

where B(m,m)
(i,i) indicates the (i, i)th element in matrix B(m,m).

After some algebra, it is found that all the diagonal elements
of matrix B(m,m)

(i,i) (1 ≤ m ≤ Q,1 ≤ i ≤ M) are equal to zeros.
Therefore, it is finally concluded that

E
[
∂Λ1(ε)
∂ε

]
= 0. (44)

In consequence, the relation in (29) is obtained.
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